Global well-posedness for the fractional Boussinesq-Coriolis system with stratification in a framework of Fourier-Besov type

被引:4
|
作者
Aurazo-Alvarez, Leithold L. [1 ]
Ferreira, Lucas C. F. [1 ]
机构
[1] Univ Estadual Campinas, Dept Math, IMECC, BR-13083859 Campinas, SP, Brazil
来源
关键词
Boussinesq-Coriolis system; Rotating fluids; Stratification; Fractional dissipation; Global well-posedness; Fourier-Besov-Morrey spaces; NAVIER-STOKES EQUATIONS; ILL-POSEDNESS; FUNCTION-SPACES; MILD SOLUTION; FORCE;
D O I
10.1007/s42985-021-00109-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the global well-posedness of the 3D fractional Boussinesq-Coriolis system with stratification in a framework of Fourier type, namely spaces of Fourier-Besov type with underlying space being Morrey spaces (FBM-spaces, for short). Under suitable conditions and rescaled density fluctuation, the result is uniform with respect to the Coriolis and stratification parameters. We cover the critical case of the dissipation, namely half-Laplacian, in which the nonlocal dissipation has the same differential order as the nonlinearity and balances critically the scaling of the quadratic nonlinearities. As a byproduct, considering trivial initial temperature and null stratification, we also obtain well-posedness results in FBM-spaces for the fractional Navier-Stokes-Coriolis system as well as for the Navier-Stokes equations with critical dissipation. Moreover, since small conditions are taken in the weak norm of FBM-spaces, we can consider some initial data with arbitrarily large Hs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{s}$$\end{document}-norms, s >= 0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 0.$$\end{document}
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Local and Global Well-Posedness for Fractional Porous Medium Equation in Critical Fourier-Besov Spaces
    El Idrissi, Ahmed
    El Boukari, Brahim
    El Ghordaf, Jalila
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 : 1 - 12
  • [2] Global well-posedness for the 3D rotating Boussinesq equations in variable exponent Fourier-Besov spaces
    Sun, Xiaochun
    Wu, Yulian
    Xu, Gaoting
    AIMS MATHEMATICS, 2023, 8 (11): : 27065 - 27079
  • [4] Global Well-Posedness and Long Time Decay of Fractional Navier-Stokes Equations in Fourier-Besov Spaces
    Xiao, Weiliang
    Chen, Jiecheng
    Fan, Dashan
    Zhou, Xuhuan
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [5] Global well-posedness and analyticity for the 3D fractional magnetohydrodynamics equations in variable Fourier-Besov spaces
    Wang, Weihua
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):
  • [6] Global well-posedness of the incompressible fractional Navier-Stokes equations in Fourier-Besov spaces with variable exponents
    Ru, Shaolei
    Abidin, Muhammad Zainul
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (04) : 1082 - 1090
  • [7] Well-Posedness for Stochastic Fractional Navier-Stokes Equation in the Critical Fourier-Besov Space
    Yin, Xiuwei
    Wu, Jiang-Lun
    Shen, Guangjun
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (04) : 2940 - 2959
  • [8] Global Well-Posedness and Analyticity of the Primitive Equations of Geophysics in Variable Exponent Fourier-Besov Spaces
    Abidin, Muhammad Zainul
    Ullah, Naeem
    Omer, Omer Abdalrhman
    SYMMETRY-BASEL, 2022, 14 (01):
  • [9] GLOBAL WELL-POSEDNESS OF THE GENERALIZED ROTATING MAGNETOHYDRODYNAMICS EQUATIONS IN VARIABLE EXPONENT FOURIER-BESOV SPACES
    Abidin, Muhammad Zainul
    Chen, Jiecheng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1177 - 1190
  • [10] Global well-posedness for the fractional Schrodinger-Boussinesq system
    Han, Lijia
    Zhang, Jingjun
    Guo, Boling
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (08) : 2644 - 2652