Deep learning radiomics of ultrasonography can predict response to neoadjuvant chemotherapy in breast cancer at an early stage of treatment: a prospective study

被引:0
|
作者
Jionghui Gu
Tong Tong
Chang He
Min Xu
Xin Yang
Jie Tian
Tianan Jiang
Kun Wang
机构
[1] The First Affiliated Hospital,Department of Ultrasound
[2] College of Medicine,CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation
[3] Zhejiang University,School of Artificial Intelligence
[4] Chinese Academy of Sciences,Beijing Advanced Innovation Center for Big Data
[5] University of Chinese Academy of Sciences,Based Precision Medicine, School of Medicine and Engineering
[6] Beihang University,undefined
[7] Zhejiang Provincial Key Laboratory of Pulsed Electric Field Technology for Medical Transformation,undefined
来源
European Radiology | 2022年 / 32卷
关键词
Breast cancer; Deep learning; Neoadjuvant chemotherapy; Ultrasonography; Treatment outcome;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2099 / 2109
页数:10
相关论文
共 50 条
  • [1] Deep learning radiomics of ultrasonography can predict response to neoadjuvant chemotherapy in breast cancer at an early stage of treatment: a prospective study
    Gu, Jionghui
    Tong, Tong
    He, Chang
    Xu, Min
    Yang, Xin
    Tian, Jie
    Jiang, Tianan
    Wang, Kun
    [J]. EUROPEAN RADIOLOGY, 2022, 32 (03) : 2099 - 2109
  • [2] Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer
    Zheng, Xueyi
    Yao, Zhao
    Huang, Yini
    Yu, Yanyan
    Wang, Yun
    Liu, Yubo
    Mao, Rushuang
    Li, Fei
    Xiao, Yang
    Wang, Yuanyuan
    Hu, Yixin
    Yu, Jinhua
    Zhou, Jianhua
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [3] Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer
    Xueyi Zheng
    Zhao Yao
    Yini Huang
    Yanyan Yu
    Yun Wang
    Yubo Liu
    Rushuang Mao
    Fei Li
    Yang Xiao
    Yuanyuan Wang
    Yixin Hu
    Jinhua Yu
    Jianhua Zhou
    [J]. Nature Communications, 11
  • [4] Radiomics for predicting response to neoadjuvant chemotherapy treatment in breast cancer
    Rabinovici-Cohen, Simona
    Tlusty, Tal
    Abutbul, Ami
    Antila, Kari
    Fernandez, Xose
    Rejo, Beatriz Grandal
    Hexter, Efrat
    Cubelos, Oliver Hijano
    Khateeb, Abed
    Pajula, Juha
    Perek, Shaked
    [J]. MEDICAL IMAGING 2020: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2020, 11318
  • [5] Can early response assessment guide neoadjuvant chemotherapy in early-stage breast cancer?
    Esteva, Francisco J.
    Hortobagyi, Gabriel N.
    [J]. JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2008, 100 (08) : 521 - 523
  • [6] Deep learning algorithm to predict pathologic complete response to neoadjuvant chemotherapy for breast cancer prior to treatment.
    Choi, Rachel
    Joel, Marina
    Hui, Miles
    Aneja, Sanjay
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (16)
  • [7] Delta Radiomics Based on Longitudinal Dual-modal Ultrasound Can Early Predict Response to Neoadjuvant Chemotherapy in Breast Cancer Patients
    Huang, Jia-Xin
    Wu, Lei
    Wang, Xue-Yan
    Lin, Shi-Yang
    Xu, Yan-Fen
    Wei, Ming-Jie
    Pei, Xiao-Qing
    [J]. ACADEMIC RADIOLOGY, 2024, 31 (05) : 1738 - 1747
  • [8] Pretreatment ultrasound-based deep learning radiomics model for the early prediction of pathologic response to neoadjuvant chemotherapy in breast cancer
    Fei-Hong Yu
    Shu-Mei Miao
    Cui-Ying Li
    Jing Hang
    Jing Deng
    Xin-Hua Ye
    Yun Liu
    [J]. European Radiology, 2023, 33 : 5634 - 5644
  • [9] Pretreatment ultrasound-based deep learning radiomics model for the early prediction of pathologic response to neoadjuvant chemotherapy in breast cancer
    Yu, Fei-Hong
    Miao, Shu-Mei
    Li, Cui-Ying
    Hang, Jing
    Deng, Jing
    Ye, Xin-Hua
    Liu, Yun
    [J]. EUROPEAN RADIOLOGY, 2023, 33 (08) : 5634 - 5644
  • [10] A Deep Learning Radiomics Nomogram to Predict Response to Neoadjuvant Chemotherapy for Locally Advanced Cervical Cancer: A Two-Center Study
    Zhang, Yajiao
    Wu, Chao
    Xiao, Zhibo
    Lv, Furong
    Liu, Yanbing
    [J]. DIAGNOSTICS, 2023, 13 (06)