Sums of weighted differentiation composition operators from weighted Bergman spaces to weighted Zygmund and Bloch-type spaces

被引:0
|
作者
Jasbir S. Manhas
Mohammed S. Al Ghafri
机构
[1] Sultan Qaboos University,Department of Mathematics, College of Science
来源
关键词
Weighted composition operators; Weighted differentiation composition operators; Weighted Bloch spaces; Weighted Zygmund spaces; Weighted Bergman spaces; Bounded and compact operators; 47B33; 47B38; 46E15;
D O I
暂无
中图分类号
学科分类号
摘要
Let H(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}({\mathbb {D}})$$\end{document} be the space of analytic functions on the unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document} and let S(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}({\mathbb {D}})$$\end{document} denote the set of all analytic self maps of the unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document}. Let Ψ=(ψj)j=0k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi =(\psi _j)_{j=0}^k$$\end{document} be such that ψj∈H(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _j\in {\mathcal {H}}({\mathbb {D}})$$\end{document} and φ∈S(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi \in {\mathcal {S}}({\mathbb {D}})$$\end{document}. To treat the Stević–Sharma type operators and the products of composition operators, multiplication operators, differentiation operators in a unified manner, Wang et al. considered the following sum operator: TΨ,φkf=∑j=0kψj·f(j)∘φ=∑j=0kDψj,φjf,f∈H(D).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} T_{\Psi ,\varphi }^kf= \sum \limits _{j=0}^k\psi _j\cdot f^{(j)}\circ \varphi = \sum \limits _{j=0}^k{\mathfrak {D}}_{\psi _j,\varphi }^jf, \quad f\in {\mathcal {H}}({\mathbb {D}}). \end{aligned}$$\end{document}We characterize the boundedness and compactness of the operators TΨ,φk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\Psi ,\varphi }^k$$\end{document} from the weighted Bergman spaces Av,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{v,p}$$\end{document} to the weighted Zygmund-type spaces Zw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Z}}_w$$\end{document} and the weighted Bloch-type spaces Bw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}_w$$\end{document}. Besides, giving examples of bounded, unbounded, compact and non-compact operators TΨ,φk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\Psi ,\varphi }^k$$\end{document}, we give an example of two unbounded weighted differentiation composition operators Dψ0,φ0,Dψ1,φ1:Av,p⟶Zw(Bw)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {D}}_{\psi _0,\varphi }^0, \ {\mathfrak {D}}_{\psi _1,\varphi }^1:A_{v,p}\longrightarrow {\mathcal {Z}}_w( {\mathcal {B}}_w)$$\end{document} such that their sum operator Dψ0,φ0+Dψ1,φ1=TΨ,φ1:Av,p⟶Zw(Bw)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {D}}_{\psi _0,\varphi }^0+ {\mathfrak {D}}_{\psi _1,\varphi }^1= T_{\Psi ,\varphi }^1:A_{v,p}\longrightarrow {\mathcal {Z}}_w( {\mathcal {B}}_w)$$\end{document} is bounded.
引用
收藏
相关论文
共 50 条