Algebraic curve for a cusped Wilson line

被引:0
|
作者
Grigory Sizov
Saulius Valatka
机构
[1] King’s College London,
[2] Department of Mathematics,undefined
关键词
Matrix Models; Wilson; ’t Hooft and Polyakov loops; AdS-CFT Correspondence; Integrable Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the classical limit of the recently obtained exact near-BPS result for the anomalous dimension of a cusped Wilson line with the insertion of an operator with L units of R-charge at the cusp in planar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 SYM. The classical limit requires taking both the ’t Hooft coupling and L to infinity. Since the formula for the cusp anomalous dimension involves determinants of size proportional to L, the classical limit requires a matrix model reformulation of the result. Building on results of Gromov and Sever, we construct such a matrix model-like representation and find the corresponding classical algebraic curve. Using this we find the classical value of the cusp anomalous dimension and the 1-loop correction to it. We check our results against the energy of the classical solution and numerically by extrapolating from the quantum regime of finite L.
引用
收藏
相关论文
共 50 条
  • [1] Algebraic curve for a cusped Wilson line
    Sizov, Grigory
    Valatka, Saulius
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (05):
  • [2] Quantum Spectral Curve for a cusped Wilson line in N=4 SYM
    Gromov, Nikolay
    Levkovich-Maslyuk, Fedor
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (04):
  • [3] TOPICS IN CUSPED/LIGHTCONE WILSON LOOPS
    Makeenko, Yuri
    ACTA PHYSICA POLONICA B, 2008, 39 (12): : 3047 - 3080
  • [4] A CUSPED VERTEX LANDAU CURVE
    CUNNINGHAM, J
    RAFIQUE, M
    NUCLEAR PHYSICS B, 1967, B 2 (02) : 237 - +
  • [5] Cusped Wilson lines in symmetric representations
    Correa, Diego H.
    Schaposnik Massolo, Fidel I.
    Trancanelli, Diego
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (08):
  • [6] Cusped Wilson lines in symmetric representations
    Diego H. Correa
    Fidel I. Schaposnik Massolo
    Diego Trancanelli
    Journal of High Energy Physics, 2015
  • [7] LINEAR SYZYGIES AND LINE BUNDLES ON AN ALGEBRAIC CURVE
    KOH, J
    STILLMAN, M
    JOURNAL OF ALGEBRA, 1989, 125 (01) : 120 - 132
  • [8] Surprises in the AdS algebraic curve constructions - Wilson loops and correlation functions
    Janik, Romuald A.
    Laskos-Grabowski, Pawel
    NUCLEAR PHYSICS B, 2012, 861 (03) : 361 - 386
  • [9] Cusped SYM Wilson loop at two loops and beyond
    Makeenko, Yuri
    Olesen, Poul
    Semenoff, Gordon W.
    NUCLEAR PHYSICS B, 2006, 748 (1-2) : 170 - 199
  • [10] Cusped light-like Wilson loops in gauge theories
    Cherednikov, I. O.
    Mertens, T.
    Van der Veken, F. F.
    PHYSICS OF PARTICLES AND NUCLEI, 2013, 44 (02) : 250 - 259