Approximation of power spectra;
Alpha divergence family;
Kullback–Leibler divergence;
Convex optimization;
Spectral estimation;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We approximate a given rational spectral density by one that is consistent with prescribed second-order statistics. Such an approximation is obtained by selecting the spectral density having minimum “distance” from under the constraint corresponding to imposing the given second-order statistics. We analyze the structure of the optimal solutions as the minimized “distance” varies in the Alpha divergence family. We show that the corresponding approximation problem leads to a family of rational solutions. Secondly, such a family contains the solution which generalizes the Kullback–Leibler solution proposed by Georgiou and Lindquist in 2003. Finally, numerical simulations suggest that this family contains solutions close to the non-rational solution given by the principle of minimum discrimination information.