Quasi-Chaotic Property of the Prime-Number Sequence

被引:0
|
作者
Richard L. Liboff
Michael Wong
机构
来源
International Journal of Theoretical Physics | 1998年 / 37卷
关键词
Field Theory; Elementary Particle; Quantum Field Theory; Finite Number; Zeta Function;
D O I
暂无
中图分类号
学科分类号
摘要
The prime-number sequence, viewed as thespectrum of eigenvalues of random matrices, is found tobe quasi-chaotic. Plots of histograms of prime-numbernearest-neighbor spacing Delta p at various values of total number of integers indicate roughagreement with the Wigner distribution and illustratelevel repulsion. A global maximum of these curves isnoted at Δp = 6. Numerical work further implies that in any maximum integer sampling, no matterhow large, a finite number of nearest neighbor spacingsdo not occur. This quasichaotic property of theprime-number sequence supports the conjecture that a formula for the n-th prime does not exist. Arule for missing spacings is inferred according towhich, as maximum number of integers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{N}$$ \end{document}increases, nearest neighbor vacancies corresponding tosmaller \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{N}$$ \end{document} vanish and new, larger value vacancies appear. Inaddition, early values of these histograms illustrate arough oscillatory behavior with periodicityδ[Δp] ≃ 6. A corollary to the resultsimplies that zeros of the Riemann zeta function likewise comprisea quasi-chaotic sequence. Application of these findingsto the resonant spectra of excited nuclei isnoted.
引用
收藏
页码:3109 / 3117
页数:8
相关论文
共 50 条
  • [1] Quasi-chaotic property of the prime-number sequence
    Liboff, RL
    Wong, M
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (12) : 3109 - 3117
  • [2] Is the Sequence of the Prime-number Sums limited?
    Mueller, Tom
    ELEMENTE DER MATHEMATIK, 2011, 66 (04) : 146 - 154
  • [3] Method and Algorithm to Construct a Quasi-Chaotic Sequence
    Nosov, V.
    Meda-Campana, J.
    Gomez-Mancilla, J.
    IEEE LATIN AMERICA TRANSACTIONS, 2019, 17 (01) : 31 - 36
  • [4] PRIME-NUMBER CODING
    LAMM, E
    AMERICAN DOCUMENTATION, 1961, 12 (03): : 172 - &
  • [5] RNS quasi-chaotic generators
    Panella, M
    Martinelli, G
    ELECTRONICS LETTERS, 2000, 36 (15) : 1325 - 1326
  • [6] AN ELEMENTARY PROOF OF THE PRIME-NUMBER THEOREM
    SELBERG, A
    ANNALS OF MATHEMATICS, 1949, 50 (02) : 305 - 313
  • [7] An RNS Architecture for Quasi-Chaotic Oscillators
    M. Panella
    G. Martinelli
    Journal of VLSI signal processing systems for signal, image and video technology, 2003, 33 : 199 - 220
  • [8] PRIME-NUMBER PARADOX IN MULTIPLIER CHAINS
    PENFIELD, P
    PROCEEDINGS OF THE IEEE, 1963, 51 (02) : 401 - &
  • [9] An RNS architecture for quasi-chaotic oscillators
    Panella, M
    Martinelli, G
    JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2003, 33 (1-2): : 199 - 220
  • [10] A new cipher quasi-chaotic frequency hopping sequence for FH/CDMA communications
    Wang, HX
    Yu, JB
    2002 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS AND WEST SINO EXPOSITION PROCEEDINGS, VOLS 1-4, 2002, : 497 - 501