On Ricci–Yamabe soliton and geometrical structure in a perfect fluid spacetime

被引:0
|
作者
Jay Prakash Singh
Mohan Khatri
机构
[1] Mizoram University,Department of Mathematics and Computer Sciences
来源
Afrika Matematika | 2021年 / 32卷
关键词
Ricci–Yamabe soliton; Perfect fluid; Poisson equation; Semiconformal curvature; Einstein’s field equation; 53B50; 53C44; 53C50; 83C02;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we studied the geometrical aspects of a perfect fluid spacetime with torse-forming vector field ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} under certain curvature restrictions, and Ricci–Yamabe soliton and η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Ricci–Yamabe soliton in a perfect fluid spacetime. Conditions for the Ricci–Yamabe soliton to be steady, expanding or shrinking are also given. Moreover, when the potential vector field ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} of η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Ricci–Yamabe soliton is of gradient type, we derive a Poisson equation and also looked at its particular cases. Lastly, a non-trivial example of perfect fluid spacetime admitting η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Ricci–Yamabe soliton is constructed.
引用
收藏
页码:1645 / 1656
页数:11
相关论文
共 50 条
  • [1] On Ricci-Yamabe soliton and geometrical structure in a perfect fluid spacetime
    Singh, Jay Prakash
    Khatri, Mohan
    [J]. AFRIKA MATEMATIKA, 2021, 32 (7-8) : 1645 - 1656
  • [2] Geometrical Structure in a Perfect Fluid Spacetime with Conformal Ricci-Yamabe Soliton
    Zhang, Pengfei
    Li, Yanlin
    Roy, Soumendu
    Dey, Santu
    Bhattacharyya, Arindam
    [J]. SYMMETRY-BASEL, 2022, 14 (03):
  • [3] Conformal Ricci soliton and geometrical structure in a perfect fluid spacetime
    Siddiqi, Mohd Danish
    Siddiqui, Shah Alam
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (06)
  • [4] Ricci soliton and geometrical structure in a perfect fluid spacetime with torse-forming vector field
    Venkatesha
    Kumara, H. Aruna
    [J]. AFRIKA MATEMATIKA, 2019, 30 (5-6) : 725 - 736
  • [5] Ricci soliton and geometrical structure in a perfect fluid spacetime with torse-forming vector field
    H. Aruna Venkatesha
    [J]. Afrika Matematika, 2019, 30 : 725 - 736
  • [6] Investigation on hyperbolic Ricci soliton in a perfect fluid spacetime
    Pahan, Sampa
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024,
  • [7] RICCI ρ-SOLITON IN A PERFECT FLUID SPACETIME WITH A GRADIENT VECTOR FIELD
    Dey, Dibakar
    Majhi, Pradip
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (01): : 235 - 242
  • [8] Relativistic perfect fluid spacetimes and Ricci–Yamabe solitons
    Mohd. Danish Siddiqi
    Uday Chand De
    [J]. Letters in Mathematical Physics, 2022, 112
  • [9] Hyperbolic Ricci soliton and gradient hyperbolic Ricci soliton on relativistic prefect fluid spacetime
    Siddiqi, Mohd. Danish
    Mofarreh, Fatemah
    [J]. AIMS MATHEMATICS, 2024, 9 (08): : 21628 - 21640
  • [10] Relativistic perfect fluid spacetimes and Ricci-Yamabe solitons
    Siddiqi, Mohd Danish
    De, Uday Chand
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (01)