Distribution in coprime residue classes of polynomially-defined multiplicative functions

被引:0
|
作者
Paul Pollack
Akash Singha Roy
机构
[1] University of Georgia,Department of Mathematics
来源
Mathematische Zeitschrift | 2023年 / 303卷
关键词
Uniform distribution; Equidistribution; Weak uniform distribution; Weak equidistribution; Multiplicative function; Primary 11A25; Secondary 11N36; 11N64;
D O I
暂无
中图分类号
学科分类号
摘要
An integer-valued multiplicative function f is said to be polynomially-defined if there is a nonconstant separable polynomial F(T)∈Z[T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(T)\in \mathbb {Z}[T]$$\end{document} with f(p)=F(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(p)=F(p)$$\end{document} for all primes p. We study the distribution in coprime residue classes of polynomially-defined multiplicative functions, establishing equidistribution results allowing a wide range of uniformity in the modulus q. For example, we show that the values ϕ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (n)$$\end{document}, sampled over integers n≤x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \le x$$\end{document} with ϕ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (n)$$\end{document} coprime to q, are asymptotically equidistributed among the coprime classes modulo q, uniformly for moduli q coprime to 6 that are bounded by a fixed power of logx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log {x}$$\end{document}.
引用
收藏
相关论文
共 50 条