Improving radar observations of precipitation with a Meteosat neural network classifier

被引:0
|
作者
G. S. Pankiewicz
C. J. Johnson
D. L. Harrison
机构
[1]  Satellite Applications,
[2] The Met Office,undefined
[3] Bracknell,undefined
[4] UK,undefined
[5]  Forecasting Systems,undefined
[6] The Met Office,undefined
[7] Bracknell,undefined
[8] UK,undefined
来源
关键词
Radar; Satellite Imagery; Numerical Weather Prediction; Doppler Radar; Pattern Recognition Technique;
D O I
暂无
中图分类号
学科分类号
摘要
Over the last few years, the potential for the application of pattern recognition techniques (including neural networks), has been investigated at The Met Office, with the aim of improving the use of satellite imagery in numerical weather prediction and in other quantitative forecasting systems. Neural networks, for example, enable the use of diverse inputs, are capable of learning highly nonlinear discriminant functions, and can be very fast when used operationally.
引用
收藏
页码:9 / 22
页数:13
相关论文
共 50 条
  • [1] Improving radar observations of precipitation with a Meteosat neural network classifier
    Pankiewicz, GS
    Johnson, CJ
    Harrison, DL
    METEOROLOGY AND ATMOSPHERIC PHYSICS, 2001, 76 (1-2) : 9 - 22
  • [2] An adaptive neural network scheme for precipitation estimation from radar observations
    Liu, HP
    Chandrasekar, V
    IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 1895 - 1897
  • [3] Radar precipitation estimation using neural network
    Liu, HP
    Chandrasekar, V
    28TH CONFERENCE ON RADAR METEOROLOGY, 1997, : 202 - 203
  • [4] The ARM Radar Network: At the Leading Edge of Cloud and Precipitation Observations
    Kollias, P.
    Bharadwaj, N.
    Clothiaux, E. E.
    Lamer, K.
    Oue, M.
    Hardin, J.
    Isom, B.
    Lindenmaier, I
    Matthews, A.
    Luke, E. P.
    Giangrande, S. E.
    Johnson, K.
    Collis, S.
    Comstock, J.
    Mather, J. H.
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2020, 101 (05) : E588 - E607
  • [5] Improving precipitation nowcasting using a three-dimensional convolutional neural network model from Multi Parameter Phased Array Weather Radar observations
    Kim, Dong-Kyun
    Suezawa, Taku
    Mega, Tomoaki
    Kikuchi, Hiroshi
    Yoshikawa, Eiichi
    Baron, Philippe
    Ushio, Tomoo
    ATMOSPHERIC RESEARCH, 2021, 262
  • [6] Improving Precipitation Estimation Using Convolutional Neural Network
    Pan, Baoxiang
    Hsu, Kuolin
    AghaKouchak, Amir
    Sorooshian, Soroosh
    WATER RESOURCES RESEARCH, 2019, 55 (03) : 2301 - 2321
  • [7] Study of Hurricanes and Typhoons from TRMM Precipitation Radar Observations: Self Organizing Map (SOM) Neural Network
    Direk, Khajonrat
    Chandrasekar, V.
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 45 - 48
  • [8] Improving a neural network classifier ensemble with multi-task learning
    Ye, Qiang
    Munro, Paul W.
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 5164 - 5170
  • [9] Radar target identification using neural network classifier based on HMM framework
    Zhou, DQ
    Guo, YH
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2001, 20 (02) : 107 - 110
  • [10] CNGAT: A Graph Neural Network Model for Radar Quantitative Precipitation Estimation
    Peng, Xuan
    Li, Qian
    Jing, Jinrui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60