Distances Between Distributions Via Stein’s Method

被引:0
|
作者
Marie Ernst
Yvik Swan
机构
[1] Université de Liège,Département de Mathématique, Faculté des Sciences
[2] Université libre de Bruxelles,Département de Mathématique, Faculté des Sciences
来源
Journal of Theoretical Probability | 2022年 / 35卷
关键词
Stein’s method; Stein equations; Stein factors; Kolmogorov distance; Wasserstein distance; Total variation distance; Integral probability metrics; 47N30; 62E17;
D O I
暂无
中图分类号
学科分类号
摘要
We build on the formalism developed in Ernst et al. (First order covariance inequalities via Stein’s method, 2019) to propose new representations of solutions to Stein equations. We provide new uniform and nonuniform bounds on these solutions (a.k.a. Stein factors). We use these representations to obtain representations for differences between expectations in terms of solutions to the Stein equations. We apply these to compute abstract Stein-type bounds on Kolmogorov, total variation and Wasserstein distances between arbitrary distributions. We apply our results to several illustrative examples and compare our results with current literature on the same topic, whenever possible. In all occurrences our results are competitive.
引用
收藏
页码:949 / 987
页数:38
相关论文
共 50 条