Synthesis and electrochemical performance of Li2FeSiO4/C cathode material using ascorbic acid as an additive

被引:0
|
作者
Ming Li
Lu-Lu Zhang
Xue-Lin Yang
Yun-Hui Huang
Hua-Bin Sun
Shi-Bing Ni
Hua-Chao Tao
机构
[1] China Three Gorges University,College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid
[2] China Three Gorges University,College of Mechanical & Power Engineering
[3] Chinese Academy of Sciences,CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics
[4] Huazhong University of Science and Technology,School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology
关键词
Lithium-ion battery; Cathode; Lithium iron silicate; Ascorbic acid;
D O I
暂无
中图分类号
学科分类号
摘要
Carbon-coated Li2FeSiO4 composite (LFS/C-AA) was synthesized via a refluxing-assisted solid-state reaction by using ascorbic acid as additive and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, galvanostatic charge/discharge measurements, and electrochemical impedance spectra (EIS) tests. The results show that ascorbic acid can to some extent prohibit the oxidation of Fe2+ during the synthesis process, and the pyrolytic carbon from ascorbic acid shows higher electronic conductivity and improves the degree of graphitization of residual carbon in the LFS/C-AA composite. Compared with LFS/C prepared without ascorbic acid, LFS/C-AA displays better electrochemical performance. The desirable property is attributed to the reduced particle size, the enhanced electronic conductivity, and the improved diffusion coefficient of lithium ions.
引用
收藏
页码:415 / 421
页数:6
相关论文
共 50 条
  • [1] Synthesis and electrochemical performance of Li2FeSiO4/C cathode material using ascorbic acid as an additive
    Li, Ming
    Zhang, Lu-Lu
    Yang, Xue-Lin
    Huang, Yun-Hui
    Sun, Hua-Bin
    Ni, Shi-Bing
    Tao, Hua-Chao
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (02) : 415 - 421
  • [2] Synthesis and electrochemical performance of Li2FeSiO4/C as cathode material for lithium batteries
    Huang, Xiaobing
    Li, Xing
    Wang, Haiyan
    Pan, Zhonglai
    Qu, Meizhen
    Yu, Zuolong
    SOLID STATE IONICS, 2010, 181 (31-32) : 1451 - 1455
  • [3] Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material
    Nytén, A
    Abouimrane, A
    Armand, M
    Gustafsson, T
    Thomas, JO
    ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (02) : 156 - 160
  • [4] Insights into the porosity and electrochemical performance of nano Li2FeSiO4 and Li2FeSiO4/C composite cathode materials
    Zhang, Qingtang
    Ji, Shaokang
    Yan, Chao
    Wang, Xiaomei
    MATERIALS TECHNOLOGY, 2022, 37 (09) : 1195 - 1204
  • [5] Combustion synthesis and electrochemical performance of Li2FeSiO4/C cathode material for lithium-ion batteries
    Dahbi, Mohammed
    Urbonaite, Sigita
    Gustafsson, Torbjorn
    JOURNAL OF POWER SOURCES, 2012, 205 : 456 - 462
  • [6] Synthesis and electrochemical properties of nanostructured Li2FeSiO4/C cathode material for Li-ion batteries
    Kam, Kinson C.
    Gustafsson, Torbjorn
    Thomas, John O.
    SOLID STATE IONICS, 2011, 192 (01) : 356 - 359
  • [7] Synthesis and electrochemical properties of Li2FeSiO4/C cathode material for lithium-ion batteries
    Zhang, L.-S. (hnzhanglinsen@163.com), 1600, Chinese Ceramic Society, Baiwanzhuang, Beijing, 100831, China (42):
  • [8] Tartaric acid assisted synthesis of Li2FeSiO4/C; Effect of carbon content on the electrochemical performance of Li2FeSiO4/C for lithium ion batteries
    Gao, Haili
    Wang, Lizhen
    Zhang, Yong
    Zhang, Aiqin
    Song, Yanhua
    POWDER TECHNOLOGY, 2014, 253 : 638 - 643
  • [9] Li2FeSiO4/C with good performance as cathode material for Li-ion battery
    Qu, Long
    Fang, Shaohua
    Zhang, Zhengxi
    Yang, Li
    Hirano, Shin-ichi
    MATERIALS LETTERS, 2013, 108 : 1 - 4
  • [10] Synthesis and electrochemical properties of Li2FeSiO4/C/Ag composite as a cathode material for Li-ion battery
    Tang Yi-qun
    Liu Xi
    Huang Xiao-bing
    Ding Xiang
    Zhou Shi-biao
    Chen Yuan-dao
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2019, 26 (06) : 1443 - 1448