Phase Transition for Continuum Widom–Rowlinson Model with Random Radii

被引:0
|
作者
David Dereudre
Pierre Houdebert
机构
[1] University of Lille,Laboratoire de Mathématiques Paul Painlevé
[2] Aix Marseille University,undefined
[3] CNRS,undefined
[4] Centrale Marseille,undefined
[5] I2M,undefined
来源
关键词
Gibbs point process; DLR equation; Boolean model; Continuum percolation; Random cluster model; Fortuin–Kasteleyn representation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the phase transition of continuum Widom–Rowlinson measures in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} with q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} types of particles and random radii. Each particle xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document} of type i is marked by a random radius ri\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_i$$\end{document} distributed by a probability measure Qi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_i$$\end{document} on R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^+$$\end{document}. The distributions Qi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_i$$\end{document} may be different for different i, this setting is called the non-symmetric case. The particles of same type do not interact with each other whereas a particle xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document} and xj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_j$$\end{document} with different type i≠j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\ne j$$\end{document} interact via an exclusion hardcore interaction forcing ri+rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_i+r_j$$\end{document} to be smaller than |xi-xj|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x_i-x_j|$$\end{document}. In the symmetric integrable case (i.e. ∫rdQ1(dr)<+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int r^dQ_1(dr)<+\infty $$\end{document} and Qi=Q1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_i=Q_1$$\end{document} for every 1≤i≤q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i\le q$$\end{document}), we show that the Widom–Rowlinson measures exhibit a standard phase transition providing uniqueness, when the activity is small, and co-existence of q ordered phases, when the activity is large. In the non-integrable case (i.e. ∫rdQi(dr)=+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int r^dQ_i(dr)=+\infty $$\end{document}, 1≤i≤q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i \le q$$\end{document}), we show another type of phase transition. We prove, when the activity is small, the existence of at least q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q+1$$\end{document} extremal phases and we conjecture that, when the activity is large, only the q ordered phases subsist. We prove a weak version of this conjecture in the symmetric case by showing that the Widom–Rowlinson measure with free boundary condition is a mixing of the q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} ordered phases if and only if the activity is large.
引用
收藏
页码:56 / 76
页数:20
相关论文
共 50 条
  • [1] Phase Transition for Continuum Widom-Rowlinson Model with Random Radii
    Dereudre, David
    Houdebert, Pierre
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2019, 174 (01) : 56 - 76
  • [2] Sharp phase transition for the continuum Widom-Rowlinson model
    Dereudre, David
    Houdebert, Pierre
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (01): : 387 - 407
  • [3] A Widom–Rowlinson Jump Dynamics in the Continuum
    Joanna Barańska
    Yuri Kozitsky
    [J]. Journal of Dynamics and Differential Equations, 2018, 30 : 637 - 665
  • [4] A phase transition in a Widom-Rowlinson model with Curie-Weiss interaction
    Kozitsky, Yuri
    Kozlovskii, Mykhailo
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [5] A Widom-Rowlinson Jump Dynamics in the Continuum
    Baranska, Joanna
    Kozitsky, Yuri
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (02) : 637 - 665
  • [6] Structure and phase equilibria of the Widom-Rowlinson model
    Brader, J. M.
    Vink, R. L. C.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (03)
  • [7] A Curie-Weiss theory of the continuum Widom-Rowlinson model
    Kozitsky, Yuri
    Kozlovskii, Mykhailo
    [J]. PHYSICS LETTERS A, 2018, 382 (11) : 766 - 770
  • [8] PHASE-TRANSITIONS OF A MULTICOMPONENT WIDOM-ROWLINSON MODEL
    RUNNELS, LK
    LEBOWITZ, JL
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (10) : 1712 - 1717
  • [9] Phase behavior of the Widom-Rowlinson mixture
    Shew, CY
    Yethiraj, A
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (19): : 7665 - 7670
  • [10] Surface order large deviations of phase interfaces for the continuum Widom-Rowlinson model in high density limit
    Schreiber, T
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2004, 53 (02) : 275 - 289