Design of a universal logic block for fault-tolerant realization of any logic operation in trapped-ion quantum circuits

被引:0
|
作者
H. Goudarzi
M. J. Dousti
A. Shafaei
M. Pedram
机构
[1] University of Southern California,Department of Electrical Engineering
来源
Quantum Information Processing | 2014年 / 13卷
关键词
Quantum computer aided design; Quantum physical mapping; Quantum instruction placement; Quantum universal logic block;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a physical mapping tool for quantum circuits, which generates the optimal universal logic block (ULB) that can, on average, perform any logical fault-tolerant (FT) quantum operations with the minimum latency. The operation scheduling, placement, and qubit routing problems tackled by the quantum physical mapper are highly dependent on one another. More precisely, the scheduling solution affects the quality of the achievable placement solution due to resource pressures that may be created as a result of operation scheduling, whereas the operation placement and qubit routing solutions influence the scheduling solution due to resulting distances between predecessor and current operations, which in turn determines routing latencies. The proposed flow for the quantum physical mapper captures these dependencies by applying (1) a loose scheduling step, which transforms an initial quantum data flow graph into one that explicitly captures the no-cloning theorem of the quantum computing and then performs instruction scheduling based on a modified force-directed scheduling approach to minimize the resource contention and quantum circuit latency, (2) a placement step, which uses timing-driven instruction placement to minimize the approximate routing latencies while making iterative calls to the aforesaid force-directed scheduler to correct scheduling levels of quantum operations as needed, and (3) a routing step that finds dynamic values of routing latencies for the qubits. In addition to the quantum physical mapper, an approach is presented to determine the single best ULB size for a target quantum circuit by examining the latency of different FT quantum operations mapped onto different ULB sizes and using information about the occurrence frequency of operations on critical paths of the target quantum algorithm to weigh these latencies. Experimental results show an average latency reduction of about 40 % compared to previous work.
引用
收藏
页码:1267 / 1299
页数:32
相关论文
共 50 条
  • [1] Design of a universal logic block for fault-tolerant realization of any logic operation in trapped-ion quantum circuits
    Goudarzi, H.
    Dousti, M. J.
    Shafaei, A.
    Pedram, M.
    QUANTUM INFORMATION PROCESSING, 2014, 13 (05) : 1267 - 1299
  • [2] Strategies for a practical advantage of fault-tolerant circuit design in noisy trapped-ion quantum computers
    Heussen, Sascha
    Postler, Lukas
    Rispler, Manuel
    Pogorelov, Ivan
    Marciniak, Christian D.
    Monz, Thomas
    Schindler, Philipp
    Mueller, Markus
    PHYSICAL REVIEW A, 2023, 107 (04)
  • [3] Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation
    Bermudez, A.
    Xu, X.
    Nigmatullin, R.
    O'Gorman, J.
    Negnevitsky, V.
    Schindler, P.
    Monz, T.
    Poschinger, U. G.
    Hempel, C.
    Home, J.
    Schmidt-Kaler, F.
    Biercuk, M.
    Blatt, R.
    Benjamin, S.
    Mueller, M.
    PHYSICAL REVIEW X, 2017, 7 (04):
  • [4] ADAPTIVE UNIVERSAL FAULT-TOLERANT LOGIC NETWORKS
    IOSUPOVICZ, A
    IEEE TRANSACTIONS ON COMPUTERS, 1975, 24 (10) : 1043 - 1048
  • [5] Fast quantum logic gates with trapped-ion qubits
    V. M. Schäfer
    C. J. Ballance
    K. Thirumalai
    L. J. Stephenson
    T. G. Ballance
    A. M. Steane
    D. M. Lucas
    Nature, 2018, 555 : 75 - 78
  • [6] Trapped-Ion Quantum Logic with Global Radiation Fields
    Weidt, S.
    Randall, J.
    Webster, S. C.
    Lake, K.
    Webb, A. E.
    Cohen, I.
    Navickas, T.
    Lekitsch, B.
    Retzker, A.
    Hensinger, W. K.
    PHYSICAL REVIEW LETTERS, 2016, 117 (22)
  • [7] Fast quantum logic gates with trapped-ion qubits
    Schafer, V. M.
    Ballance, C. J.
    Thirumalai, K.
    Stephenson, L. J.
    Ballance, T. G.
    Steane, A. M.
    Lucas, D. M.
    NATURE, 2018, 555 (7694) : 75 - +
  • [8] Fault-Tolerant Parity Readout on a Shuttling-Based Trapped-Ion Quantum Computer
    Hilder, J.
    Pijn, D.
    Onishchenko, O.
    Stahl, A.
    Orth, M.
    Lekitsch, B.
    Rodriguez-Blanco, A.
    Mueller, M.
    Schmidt-Kaler, F.
    Poschinger, U. G.
    PHYSICAL REVIEW X, 2022, 12 (01)
  • [9] FTQLS: Fault-Tolerant Quantum Logic Synthesis
    Lin, Chia-Chun
    Chakrabarti, Amlan
    Jha, Niraj K.
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2014, 22 (06) : 1350 - 1363
  • [10] Design of Fault Tolerant Universal Logic in QCA
    Sen, Bibhash
    Mukherjee, Rijoy
    Nath, Rajdeep Kumar
    Sikdar, Biplab K.
    2014 FIFTH INTERNATIONAL SYMPOSIUM ON ELECTRONIC SYSTEM DESIGN (ISED), 2014, : 166 - 170