Unoriented WZW Models and Holonomy of Bundle Gerbes

被引:0
|
作者
Urs Schreiber
Christoph Schweigert
Konrad Waldorf
机构
[1] Universität Hamburg,Fachbereich Mathematik, Schwerpunkt Algebra und Zahlentheorie
来源
关键词
Line Bundle; Local Data; Target Space; Fundamental Domain; Local Section;
D O I
暂无
中图分类号
学科分类号
摘要
The Wess-Zumino term in two-dimensional conformal field theory is best understood as a surface holonomy of a bundle gerbe. We define additional structure for a bundle gerbe that allows to extend the notion of surface holonomy to unoriented surfaces. This provides a candidate for the Wess-Zumino term for WZW models on unoriented surfaces. Our ansatz reproduces some results known from the algebraic approach to WZW models.
引用
收藏
页码:31 / 64
页数:33
相关论文
共 50 条
  • [1] Unoriented WZW models and holonomy of bundle gerbes
    Schreiber, Urs
    Schweigert, Christoph
    Waldorf, Konrad
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 274 (01) : 31 - 64
  • [2] Gerbes in unoriented WZW Models
    Department Mathematik, Universität Hamburg, Bundesstraße 55, D-20146 Hamburg, Germany
    Proc. Summer Sch. Mod. Math. Phys., MPHYS, (423-430):
  • [3] Bundle gerbes and surface holonomy
    Fuchs, Jurgen
    Nikolaus, Thomas
    Schweigert, Christoph
    Waldorf, Konrad
    EUROPEAN CONGRESS OF MATHEMATICS 2008, 2010, : 167 - +
  • [4] WZW branes and gerbes
    Gawedzki, K
    Reis, N
    REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (12) : 1281 - 1334
  • [5] Abelian and non-abelian branes in WZW models and gerbes
    Gawedzki, K
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 258 (01) : 23 - 73
  • [6] Abelian and Non-Abelian Branes in WZW Models and Gerbes
    Krzysztof Gawedzki
    Communications in Mathematical Physics, 2005, 258 : 23 - 73
  • [7] Bundle gerbes for orientifold sigma models
    Gawedzki, Krzysztof
    Suszek, Rafal R.
    Waldorf, Konrad
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 15 (03) : 621 - 687
  • [8] Holonomy for gerbes over orbifolds
    Lupercio, Ernesto
    Uribe, Bernardo
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (09) : 1534 - 1560
  • [9] Bundle Gerbes
    Murray, MK
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 : 403 - 416
  • [10] GERBES, HOLONOMY FORMS AND REAL STRUCTURES
    Wang, Shuguang
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (01) : 109 - 130