Estimates on Eigenvalues of Laplacian

被引:0
|
作者
Qing-Ming Cheng
Hongcang Yang
机构
[1] Saga University,Department of Mathematics, Faculty of Science and Engineering
[2] Academy of Mathematics and Systematical Sciences,undefined
来源
Mathematische Annalen | 2005年 / 331卷
关键词
Manifold; Riemannian Manifold; Unit Sphere; Asymptotical Formula; Connected Domain;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study eigenvalues of Laplacian on either a bounded connected domain in an n-dimensional unit sphere Sn(1), or a compact homogeneous Riemannian manifold, or an n-dimensional compact minimal submanifold in an N-dimensional unit sphere SN(1). We estimate the k+1-th eigenvalue by the first k eigenvalues. As a corollary, we obtain an estimate of difference between consecutive eigenvlaues. Our results are sharper than ones of P. C. Yang and Yau [25], Leung [19], Li [20] and Harrel II and Stubbe [12], respectively. From Weyl’s asymptotical formula, we know that our estimates are optimal in the sense of the order of k for eigenvalues of Laplacian on a bounded connected domain in an n-dimensional unit sphere Sn(1).
引用
收藏
页码:445 / 460
页数:15
相关论文
共 50 条
  • [1] Estimates for eigenvalues of the Laplacian
    Kroger, P
    [J]. POTENTIAL THEORY - ICPT 94, 1996, : 377 - 382
  • [2] Estimates on eigenvalues of Laplacian
    Cheng, QM
    Yang, HC
    [J]. MATHEMATISCHE ANNALEN, 2005, 331 (02) : 445 - 460
  • [3] ESTIMATES FOR SUMS OF EIGENVALUES OF THE LAPLACIAN
    KROGER, P
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 126 (01) : 217 - 227
  • [4] Estimates for the first eigenvalues of the affine Laplacian
    Huang, Guangyue
    Zhu, Mingfang
    [J]. ARCHIV DER MATHEMATIK, 2023, 121 (01) : 77 - 87
  • [5] Estimates for the first eigenvalues of the affine Laplacian
    Guangyue Huang
    Mingfang Zhu
    [J]. Archiv der Mathematik, 2023, 121 : 77 - 87
  • [6] Estimates for eigenvalues of weighted Laplacian and weighted p-Laplacian
    Du, Feng
    Mao, Jing
    Wang, Qiaoling
    Xia, Changyu
    [J]. HIROSHIMA MATHEMATICAL JOURNAL, 2021, 51 (03) : 335 - 353
  • [7] Estimates for eigenvalues of Laplacian operator with any order
    Fa-en WU~(1+) Lin-fen CAO~2 1 Department of Mathematics
    2 Department of Mathematics
    [J]. Science China Mathematics, 2007, (08) : 1078 - 1086
  • [8] Estimates of eigenvalues of the Laplacian by a reduced number of subsets
    Kei Funano
    [J]. Israel Journal of Mathematics, 2017, 217 : 413 - 433
  • [9] ESTIMATES OF EIGENVALUES OF THE LAPLACIAN BY A REDUCED NUMBER OF SUBSETS
    Funano, Kei
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2017, 217 (01) : 413 - 433
  • [10] Estimates for eigenvalues of Laplacian operator with any order
    Fa-en Wu
    Lin-fen Cao
    [J]. Science in China Series A: Mathematics, 2007, 50 : 1078 - 1086