The Relation Between Oxygen Consumption and the Equilibrated Inspired Oxygen Fraction in an Anesthetic Circle Breathing System: A Mathematic Formulation & Laboratory Simulations

被引:0
|
作者
Tsai-Hsin Chen
Chung-Han Hsin
Wen-Ru Ko
Cher-Ming Liou
Wei-Te Hung
机构
[1] Chung Shan Medical University and Hospital,Department of Anesthesiology
[2] Chung Shan Medical University and Hospital,Department of Otorhinolaryngology
来源
Annals of Biomedical Engineering | 2009年 / 37卷
关键词
Oxygen—inspired concentration; Oxygen—consumption; Ventilation—fresh gas flow;
D O I
暂无
中图分类号
学科分类号
摘要
Measuring a patients’ oxygen consumption ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{\text{V}}}{\text{O}}_{2} $$\end{document}) is valuable in critical care and during anesthesia. Up to now, there has been no satisfactory equation describing the relation between the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{\text{V}}}{\text{O}}_{2} $$\end{document}, the fresh gas, and FIO2 in a semi-closed circle breathing system. By adopting a “volume-weighted average concentration” approach and stepwise calculations, we have proposed an equation. We constructed a model with known simulated O2 consumption (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ _{{{\text{SIM}}}} {\dot{\text{V}}}{\text{O}}_{2} $$\end{document}) to test our equation and two other previous methods (Biro’s and Azami’s). After 32 different laboratory scenarios, the %-error of the calculated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{\text{V}}}{\text{O}}_{2} $$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ _{{{\text{CAL}}}} {\dot{\text{V}}}{\text{O}}_{2} $$\end{document}) from our method is −4.0 ± 2.9%, which is significantly better than those from Azami’s method (−8.8 ± 6.2%, p < 0.01) and from Biro’s method (−27.4 ± 5.1%, p < 0.01). We also produce a Bland–Altman analysis of our \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ _{{{\text{CAL}}}} {\dot{\text{V}}}{\text{O}}_{2} $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ _{{{\text{SIM}}}} {\dot{\text{V}}}{\text{O}}_{2} . $$\end{document} The 95% limits of agreement are −18.6–3.3 mL/min with a mean bias of −7.7 mL/min, which shows a good agreement. Our equation also explains the difference between FIO2 and the oxygen concentration of the fresh gas in a semi-closed circle breathing system.
引用
收藏
相关论文
共 2 条