On possible composite structure of scalar fields in expanding universe

被引:0
|
作者
A. A. Zheltukhin
机构
[1] Kharkov Institute of Physics and Technology,NORDITA
[2] KTH Royal Institute of Technology and Stockholm University,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Scalar fields in curved backgrounds are assumed to be composite objects. As an example realizing such a possibility we consider a model of the massless tensor field lμν(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\mu \nu }(x)$$\end{document} in a 4-dim. background gμν(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mu \nu }(x)$$\end{document} with spontaneously broken Weyl and scale symmetries. It is shown that the potential of lμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\mu \nu }$$\end{document}, represented by a scalar quartic polynomial, has the degenerate extremal described by the composite Nambu–Goldstone scalar boson ϕ(x):=gμνlμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (x):=g^{\mu \nu }l_{\mu \nu }$$\end{document}. Removal of the degeneracy shows that ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} acquires a non-zero vev ⟨ϕ⟩0=μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \phi \rangle _{0}=\mu $$\end{document} which, together with the free parameters of the potential, defines the cosmological constant. The latter is zero for a certain choice of the parameters.
引用
收藏
相关论文
共 50 条
  • [1] On possible composite structure of scalar fields in expanding universe
    Zheltukhin, A. A.
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (01):
  • [2] LATTICEEASY: A program for lattice simulations of scalar fields in an expanding universe
    Felder, Gary
    Tkachev, Igor
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 178 (12) : 929 - 932
  • [3] The quantum theory of scalar fields on the de Sitter expanding universe
    Cotaescu, Ion I.
    Crucean, Cosmin
    Pop, Adrian
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (16-17): : 2563 - 2577
  • [4] Ultralight scalar fields and the growth of structure in the Universe
    Marsh, David J. E.
    Ferreira, Pedro G.
    PHYSICAL REVIEW D, 2010, 82 (10):
  • [5] Heisenberg-picture approach to the evolution of the scalar fields in an expanding universe
    Cho, KH
    Ji, JY
    Kim, SP
    Lee, CH
    Ryu, JY
    PHYSICAL REVIEW D, 1997, 56 (08) : 4916 - 4921
  • [6] Universe evolution with scalar fields
    Piccinelli, G
    GALAXY EVOLUTION: THEORY AND OBSERVATIONS, 2003, 17 : 30 - 31
  • [7] CLUSTEREASY: A program for lattice simulations of scalar fields in an expanding universe on parallel computing clusters
    Felder, Gary
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (08) : 604 - 606
  • [8] Quantum fields in an expanding universe
    Finelli, F
    Gruppuso, A
    Venturi, G
    CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (12) : 3923 - 3935
  • [9] Magnetic fields in an expanding universe
    Kastor, David
    Traschen, Jennie
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (07)
  • [10] STROMGREN SPHERE IN THE EXPANDING UNIVERSE AND A POSSIBLE SEED OF STRUCTURE FORMATION
    SATO, H
    PROGRESS OF THEORETICAL PHYSICS, 1994, 92 (01): : 37 - 46