On a new class of functional equations satisfied by polynomial functions

被引:0
|
作者
Timothy Nadhomi
Chisom Prince Okeke
Maciej Sablik
Tomasz Szostok
机构
[1] University of Silesia,Institute of Mathematics
来源
Aequationes mathematicae | 2021年 / 95卷
关键词
Functional equations; Polynomial functions; Monomial functions; Fréchet operator; Continuity of monomial functions; 39B22; 39B52; 20K99; 12D99;
D O I
暂无
中图分类号
学科分类号
摘要
The classical result of L. Székelyhidi states that (under some assumptions) every solution of a general linear equation must be a polynomial function. It is known that Székelyhidi’s result may be generalized to equations where some occurrences of the unknown functions are multiplied by a linear combination of the variables. In this paper we study the equations where two such combinations appear. The simplest nontrivial example of such a case is given by the equation F(x+y)-F(x)-F(y)=yf(x)+xf(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} F(x + y) - F(x) - F(y) = yf(x) + xf(y) \end{aligned}$$\end{document}considered by Fechner and Gselmann (Publ Math Debrecen 80(1–2):143–154, 2012). In the present paper we prove several results concerning the systematic approach to the generalizations of this equation.
引用
收藏
页码:1095 / 1117
页数:22
相关论文
共 50 条