A data-driven machine learning approach to predict the hardenability curve of boron steels and assist alloy design

被引:0
|
作者
Xiaoxiao Geng
Zhuo Cheng
Shuize Wang
Chongkuo Peng
Asad Ullah
Hao Wang
Guilin Wu
机构
[1] University of Science and Technology Beijing,Beijing Advanced Innovation Center for Materials Genome Engineering
[2] University of Science and Technology Beijing,School of Materials Science and Engineering
[3] Karakoram International University,Department of Mathematical Sciences
[4] Yangjiang Branch,undefined
[5] Guangdong Laboratory for Materials Science and Technology (Yangjiang Advanced Alloys Laboratory),undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:10755 / 10768
页数:13
相关论文
共 50 条
  • [1] A data-driven machine learning approach to predict the hardenability curve of boron steels and assist alloy design
    Geng, Xiaoxiao
    Cheng, Zhuo
    Wang, Shuize
    Peng, Chongkuo
    Ullah, Asad
    Wang, Hao
    Wu, Guilin
    [J]. JOURNAL OF MATERIALS SCIENCE, 2022, 57 (23) : 10755 - 10768
  • [2] A data-driven machine learning approach to predicting stacking faulting energy in austenitic steels
    N. Chaudhary
    A. Abu-Odeh
    I. Karaman
    R. Arróyave
    [J]. Journal of Materials Science, 2017, 52 : 11048 - 11076
  • [3] A data-driven machine learning approach to predicting stacking faulting energy in austenitic steels
    Chaudhary, N.
    Abu-Odeh, A.
    Karaman, I.
    Arroyave, R.
    [J]. JOURNAL OF MATERIALS SCIENCE, 2017, 52 (18) : 11048 - 11076
  • [4] A Data-Driven Machine Learning Approach to Predict the Natural Gas Density of Pure and Mixed Hydrocarbons
    Tariq, Zeeshan
    Hassan, Amjed
    Bin Waheed, Umair
    Mahmoud, Mohamed
    Al-Shehri, Dhafer
    Abdulraheem, Abdulazeez
    Mokheimer, Esmail M. A.
    [J]. JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2021, 143 (09):
  • [5] Clustering suicides: A data-driven, exploratory machine learning approach
    Ludwig, Birgit
    Koenig, Daniel
    Kapusta, Nestor D.
    Blueml, Victor
    Dorffner, Georg
    Vyssoki, Benjamin
    [J]. EUROPEAN PSYCHIATRY, 2019, 62 : 15 - 19
  • [6] Machine Learning based Psychology: Advocating for A Data-Driven Approach
    Velez, Jorge I.
    [J]. INTERNATIONAL JOURNAL OF PSYCHOLOGICAL RESEARCH, 2021, 14 (01): : 6 - 11
  • [7] Prediction of casing damage: A data-driven, machine learning approach
    Zhao, Yanhong
    Jiang, Hanqiao
    Li, Hongqi
    [J]. International Journal of Circuits, Systems and Signal Processing, 2020, 14 : 1047 - 1053
  • [8] Data-driven machine learning for alloy research: Recent applications and prospects
    Gao, Xueyun
    Wang, Haiyan
    Tan, Huijie
    Xing, Lei
    Hu, Zhiyu
    [J]. MATERIALS TODAY COMMUNICATIONS, 2023, 36
  • [9] Using explainable machine learning to predict compressive strength of blended concrete: a data-driven metaheuristic approach
    Kashifi M.T.
    Salami B.A.
    Rahman S.M.
    Alimi W.
    [J]. Asian Journal of Civil Engineering, 2024, 25 (1) : 219 - 236
  • [10] AN APPROACH TO DATA-DRIVEN LEARNING
    MARKOV, Z
    [J]. LECTURE NOTES IN ARTIFICIAL INTELLIGENCE, 1991, 535 : 127 - 140