Normalized ground state traveling solitary waves for the half-wave equations with combined nonlinearities

被引:0
|
作者
Guoqing Zhang
Yawen Li
机构
[1] University of Shanghai for Science and Technology,College of Science
关键词
Half-wave equation; Normalized traveling solitary waves; Ground state; Minimax approach; 35Q55; 35J20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the half-wave equations with combined power nonlinearities i∂tu=-Δu-μuq-1u-up-1u,t,x∈R×Rd,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} i\partial _tu=\sqrt{-\Delta }u-\mu \left| u \right| ^{q-1}u-\left| u \right| ^{p-1}u,~~~~\left( t,x \right) \in \mathbb {R}\times \mathbb {R}^{d}, \end{aligned}$$\end{document}where d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}, μ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \in \mathbb {R}$$\end{document} and 1<q<p<1+2d-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<q<p< 1+\frac{2}{d-1}$$\end{document}. We study traveling solitary waves of the form u(x,t)=eiωtQ(x-vt),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u(x,t)=e^{i\omega t}Q(x-vt), \end{aligned}$$\end{document}with frequency w∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w \in \mathbb {R}$$\end{document}, and velocity v∈Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in \mathbb {R}^{d}$$\end{document}. As v⩾1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| v \right| \geqslant 1$$\end{document}, we establish a general nonexistence of traveling solitary waves by using Riesz transforms and a virial-type identity. As 0<v<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \left| v \right| < 1$$\end{document}, under different assumptions on q<p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q< p$$\end{document}, we prove several existence results for traveling solitary waves. In particular, we consider cases when 1<q<1+2d<p<1+2d-1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 1< q< 1+\frac{2}{d}< p< 1+\frac{2}{d-1}, \end{aligned}$$\end{document}i.e., the two nonlinearities have different character with respect to the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document}-critical exponent. Note that such traveling solitary waves Q is not radially symmetric in x∈Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in \mathbb {R}^{d}$$\end{document}, and we need to overcome the lack of compactness and obtain the existence of mountain-pass-type solution and saddle-type solution. In addition, based on the existence and properties of traveling solitary waves, we also prove that small data scattering fails to hold for the nonlinear half-wave equations.
引用
收藏
相关论文
共 50 条
  • [1] Normalized ground state traveling solitary waves for the half-wave equations with combined nonlinearities
    Zhang, Guoqing
    Li, Yawen
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (04):
  • [2] Normalized traveling solitary waves for a class of nonlinear half-wave equations
    Zhang, Guoqing
    Liang, Chuchu
    Zhao, Dun
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 209 (209)
  • [3] On Traveling Solitary Waves and Absence of Small Data Scattering for Nonlinear Half-Wave Equations
    Bellazzini, Jacopo
    Georgiev, Vladimir
    Lenzmann, Enno
    Visciglia, Nicola
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 372 (02) : 713 - 732
  • [4] On Traveling Solitary Waves and Absence of Small Data Scattering for Nonlinear Half-Wave Equations
    Jacopo Bellazzini
    Vladimir Georgiev
    Enno Lenzmann
    Nicola Visciglia
    [J]. Communications in Mathematical Physics, 2019, 372 : 713 - 732
  • [5] Correction to: On Traveling Solitary Waves and Absence of Small Data Scattering for Nonlinear Half-Wave Equations
    Jacopo Bellazzini
    Vladimir Georgiev
    Enno Lenzmann
    Nicola Visciglia
    [J]. Communications in Mathematical Physics, 2021, 383 : 1291 - 1294
  • [6] Existence of the stable traveling wave for half-wave equation withL2-critical combined nonlinearities
    Li, Yuan
    Zhao, Dun
    Wang, Qingxuan
    [J]. APPLICABLE ANALYSIS, 2022, 101 (07) : 2498 - 2510
  • [7] On Traveling Solitary Waves and Absence of Small Data Scattering for Nonlinear Half-Wave Equations (vol 372, pg 713, 2019)
    Bellazzini, Jacopo
    Georgiev, Vladimir
    Lenzmann, Enno
    Visciglia, Nicola
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 383 (02) : 1291 - 1294
  • [8] Traveling wave phenomena of inhomogeneous half-wave equation
    Feng, Zhaosheng
    Su, Yu
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 400 : 248 - 277
  • [9] NORMALIZED GROUND STATE SOLUTIONS FOR NONLINEAR SCHRODINGER EQUATIONS WITH GENERAL SOBOLEV CRITICAL NONLINEARITIES
    Liu, Manting
    Chang, Xiaojun
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [10] Normalized ground states for the NLS equation with combined nonlinearities
    Soave, Nicola
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (09) : 6941 - 6987