Localized and Expanding Entire Solutions of Reaction–Diffusion Equations

被引:0
|
作者
F. Hamel
H. Ninomiya
机构
[1] CNRS,Aix Marseille Univ
[2] Centrale Marseille,School of Interdisciplinary Mathematical Sciences
[3] I2M,undefined
[4] Meiji University,undefined
关键词
Reaction–diffusion equations; Entire solutions; Extinction; Propagation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the spatio-temporal dynamics of nonnegative bounded entire solutions of some reaction–diffusion equations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document} in any space dimension N. The solutions are assumed to be localized in the past. Under certain conditions on the reaction term, the solutions are then proved to be time-independent or heteroclinic connections between different steady states. Furthermore, either they are localized uniformly in time, or they converge to a constant steady state and spread at large time. This result is then applied to some specific bistable-type reactions.
引用
收藏
页码:2937 / 2974
页数:37
相关论文
共 50 条
  • [1] Localized and Expanding Entire Solutions of Reaction-Diffusion Equations
    Hamel, F.
    Ninomiya, H.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (04) : 2937 - 2974
  • [2] Entire solutions of some reaction-diffusion equations
    Guo, JS
    RECENT ADVANCES IN ELLIPTIC AND PARABOLIC PROBLEMS, 2005, : 121 - 135
  • [3] Polyhedral entire solutions in reaction-diffusion equations
    Taniguchi, Masaharu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 429 : 529 - 565
  • [4] Entire Solutions with Merging Fronts to Reaction–Diffusion Equations
    Yoshihisa Morita
    Hirokazu Ninomiya
    Journal of Dynamics and Differential Equations, 2006, 18 : 841 - 861
  • [5] Entire solutions of delayed reaction-diffusion equations
    Lv, Guangying
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2012, 92 (03): : 204 - 216
  • [6] Entire solutions in reaction-advection-diffusion equations in cylinders
    Li, Wan-Tong
    Liu, Nai-Wei
    Wang, Zhi-Cheng
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (05): : 492 - 504
  • [7] Entire solutions with merging fronts to reaction-diffusion equations
    Morita, Yoshihisa
    Ninomiya, Hirokazu
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2006, 18 (04) : 841 - 861
  • [8] Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations
    Guo, JS
    Morita, Y
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 12 (02) : 193 - 212
  • [9] Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity
    Li, Wan-Tong
    Wang, Zhi-Cheng
    Wu, Jianhong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (01) : 102 - 129
  • [10] Long Time Behavior of Entire Solutions to Bistable Reaction Diffusion Equations
    Wang, Yang
    Li, Xiong
    TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (06): : 1449 - 1470