A numerical approach for solving nonlinear Fredholm integro-differential equation with boundary layer

被引:0
|
作者
Musa Cakir
Yilmaz Ekinci
Erkan Cimen
机构
[1] Van Yuzuncu Yil University,Department of Mathematics, Faculty of Science
[2] Van Yuzuncu Yil University,Department of Mathematics, Institute of Natural and Applied Sciences
[3] Van Yuzuncu Yil University,Department of Mathematics, Faculty of Education
来源
关键词
Singular perturbation; Initial-value problem; Fredholm integro-differential equation; Uniform convergence; Shishkin mesh; 65L05; 65L11; 65L12; 65L20; 65R20;
D O I
暂无
中图分类号
学科分类号
摘要
The study deals with an initial-value problem for a singularly perturbed nonlinear Fredholm integro-differential equation. Parameter explicit theoretical bounds on the continuous solution and its derivative are derived. To solve the approximate solution to this problem, a new difference scheme is constructed with the finite difference method by using the interpolated quadrature rules with the remaining terms in integral form. Parameter uniform error estimates for the approximate solution are established. It is proved that the method converges in the discrete maximum norm, uniformly with respect to the perturbation parameter. Numerical results are given to illustrate the parameter-uniform convergence of the numerical approximations.
引用
收藏
相关论文
共 50 条
  • [1] A numerical approach for solving nonlinear Fredholm integro-differential equation with boundary layer
    Cakir, Musa
    Ekinci, Yilmaz
    Cimen, Erkan
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [2] Numerical approach for solving fractional Fredholm integro-differential equation
    Gulsu, Mustafa
    Ozturk, Yalcin
    Anapali, Ayse
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (07) : 1413 - 1434
  • [3] A METHOD OF SOLVING A NONLINEAR BOUNDARY VALUE PROBLEM FOR THE FREDHOLM INTEGRO-DIFFERENTIAL EQUATION
    Dzhumabaev, Dulat S.
    Mynbayeva, Sandugash
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2021, 33 (01) : 53 - 75
  • [4] A sequential approach for solving the Fredholm integro-differential equation
    Berenguer, M. I.
    Fernandez Munoz, M. V.
    Garralda-Guillem, A. I.
    Ruiz Galan, M.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2012, 62 (04) : 297 - 304
  • [5] Analytical and Numerical Approach for a Nonlinear Volterra-Fredholm Integro-differential Equation
    Bounaya, Mohammed Charif
    Lemita, Samir
    Touati, Sami
    Aissaoui, Mohamed Zine
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [6] A numerical approach for solving nonlinear fractional Volterra-Fredholm integro-differential equations with mixed boundary conditions
    Sahu, P. K.
    Ray, S. Saha
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (05)
  • [7] One approach to solve a nonlinear boundary value problem for the Fredholm integro-differential equation
    Dzhumabaev, D. S.
    Mynbayeva, S. T.
    [J]. BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2020, 97 (01): : 27 - 36
  • [8] Investigation Approach for a Nonlinear Singular Fredholm Integro-differential Equation
    Touati, Sami
    Aissaoui, Mohamed Zine
    Lemita, Samir
    Guebbai, Hamza
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [9] A NUMERICAL METHOD FOR SOLVING NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS OF FREDHOLM TYPE
    Boglaev, Igor
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2016, 34 (03) : 262 - 284
  • [10] On solvability of boundary value problem for a nonlinear Fredholm integro-differential equation
    Assanova, A. T.
    Zhumatov, S. S.
    Mynbayeva, S. T.
    Karakenova, S. G.
    [J]. BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 105 (01): : 25 - 34