Identifying rotational radon transforms

被引:0
|
作者
Árpád Kurusa
机构
[1] Bolyai Institute,
来源
关键词
invariant Radon transform; identification of Radon transform; rotational Radon transform; conformal Radon transform; 44A12;
D O I
暂无
中图分类号
学科分类号
摘要
We show classes of test functions so that dilational and rotational invariances of the image \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathcal{S},\mu } f$$\end{document} of such a test function f determines dilational and rotational invariances of rotational Radon transform \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathcal{S},\mu }$$\end{document}. Then we determine the defining flower S and weight µ of a conformal Radon transform \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathcal{S},\mu }$$\end{document} in terms of the image \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathcal{S},\mu } f$$\end{document} of an unknown function that is a sum of an L2-function and finitely many Dirac distributions if the flower \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{S}$$\end{document} is not selftangent.
引用
收藏
页码:187 / 209
页数:22
相关论文
共 50 条