On the lengths of mutually permutable products of finite groups

被引:0
|
作者
V. I. Murashka
A. F. Vasil’ev
机构
[1] Francisk Skorina Gomel State University,Faculty of Mathematics and Technologies of Programming
关键词
finite group; generalized Fitting subgroup; mutually permutable product of groups; generalized Fitting height; non-p-soluble length; Plotkin radical; 20D40; 20D25;
D O I
暂无
中图分类号
学科分类号
摘要
E. I. Khukhro and P. Shumyatsky introduced the generalized Fitting height h∗(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^*(G)$$\end{document} and the non-p-soluble length λp(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda_p(G)$$\end{document} of a group G. We prove that if a finite group G is a mutually permutable product of subgroups A and B then max{h∗(A),h∗(B)}≤h∗(G)≤max{h∗(A),h∗(B)}+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max\{h^*(A), h^*(B)\}\leq h^*(G)\leq \max\{h^*(A), h^*(B)\}+1$$\end{document} and max{λp(A),λp(B)}=λp(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max\{\lambda_p(A), \lambda_p(B)\}= \lambda_p(G)$$\end{document}. Also we introduce and study the non-Frattini length.
引用
收藏
页码:412 / 429
页数:17
相关论文
共 50 条
  • [1] On the lengths of mutually permutable products of finite groups
    Murashka, V. I.
    Vasil'ev, A. F.
    ACTA MATHEMATICA HUNGARICA, 2023, 170 (01) : 412 - 429
  • [2] On mutually permutable products of finite groups
    A. A. Heliel
    Rola A. Hijazi
    Acta Mathematica Hungarica, 2013, 139 : 344 - 353
  • [3] Mutually permutable products of finite groups
    Ballester-Bolinches, A
    Pérez-Ramos, MD
    Pedraza-Aguilera, MC
    JOURNAL OF ALGEBRA, 1999, 213 (01) : 369 - 377
  • [4] On mutually permutable products of finite groups
    Heliel, A. A.
    Hijazi, R. A.
    ACTA MATHEMATICA HUNGARICA, 2013, 139 (04) : 344 - 353
  • [5] On mutually permutable products of finite groups
    Ballester-Bolinches, A
    Cossey, J
    Pedraza-Aguilera, MC
    JOURNAL OF ALGEBRA, 2005, 294 (01) : 127 - 135
  • [6] On mutually permutable products of finite groups
    Ballester-Bolinches, Adolfo
    Li, Yangming
    Carmen Pedraza-Aguilera, Mari
    Su, Ning
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (04) : 711 - 719
  • [7] Totally and mutually permutable products of finite groups
    Ballester-Bolinches, A
    MATHEMATICS AND THE 21ST CENTURY, 2001, : 159 - 167
  • [8] Mutually permutable products of finite groups, II
    Ballester-Bolinches, A
    Pedraza-Aguilera, MC
    JOURNAL OF ALGEBRA, 1999, 218 (02) : 563 - 572
  • [9] Radicals in mutually permutable products of finite groups
    Bochtler, Jonas
    JOURNAL OF ALGEBRA, 2009, 321 (01) : 353 - 360
  • [10] Some classes of finite groups and mutually permutable products
    Asaad, M.
    Ballester-Bolinches, A.
    Beidleman, J. C.
    Esteban-Romero, R.
    JOURNAL OF ALGEBRA, 2008, 319 (08) : 3343 - 3351