E. I. Khukhro and P. Shumyatsky introduced the generalized Fitting height h∗(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$h^*(G)$$\end{document} and the non-p-soluble length λp(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda_p(G)$$\end{document} of a group G. We prove that if a finite group G is a mutually permutable product of subgroups A and B then
max{h∗(A),h∗(B)}≤h∗(G)≤max{h∗(A),h∗(B)}+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\max\{h^*(A), h^*(B)\}\leq h^*(G)\leq \max\{h^*(A), h^*(B)\}+1$$\end{document} and max{λp(A),λp(B)}=λp(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\max\{\lambda_p(A), \lambda_p(B)\}= \lambda_p(G)$$\end{document}. Also we introduce and study the non-Frattini length.
机构:
Francisk Skorina Gomel State Univ, Fac Math & Technol Programming, Sovetskaya 104, Gomel 246028, BELARUSFrancisk Skorina Gomel State Univ, Fac Math & Technol Programming, Sovetskaya 104, Gomel 246028, BELARUS
Murashka, V. I.
Vasil'ev, A. F.
论文数: 0引用数: 0
h-index: 0
机构:
Francisk Skorina Gomel State Univ, Fac Math & Technol Programming, Sovetskaya 104, Gomel 246028, BELARUSFrancisk Skorina Gomel State Univ, Fac Math & Technol Programming, Sovetskaya 104, Gomel 246028, BELARUS