Relative t-designs in Johnson association schemes for P-polynomial structure

被引:0
|
作者
Yan Zhu
Naoki Watamura
机构
[1] University of Shanghai for Science and Technology,College of Science
[2] Shanghai University,Department of Mathematics
来源
关键词
Relative ; -design; Johnson association scheme; P-polynomial association scheme; Tight design; Product association scheme; 05B05; 05B30; 05E30;
D O I
暂无
中图分类号
学科分类号
摘要
Relative t-designs are defined in both P- and Q-polynomial association schemes. In this paper, we investigate relative t-designs in Johnson association schemes J(v, k) for P-polynomial structure. It is known that each nontrivial shell of J(v, k) is identified with the product of two smaller Johnson association schemes. We prove that relative t-designs in J(v, k) supported by one shell are equivalent to weighted T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal T$$\end{document}-designs in the shell (as product of association schemes) for T={(t1,t2)∣0≤t1,t2≤t}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal T=\{(t_1,t_2) \mid 0\le t_1,t_2\le t\}$$\end{document}. We study the existence problem of tight relative t-designs on one shell of J(v, k) for t=2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=2,3$$\end{document}. We propose an algorithm to explicitly construct a family of non-trivial tight relative 2-designs. In addition, we obtain tight relative 3-designs for some special parameters.
引用
收藏
页码:2101 / 2118
页数:17
相关论文
共 48 条