Relative t-designs are defined in both P- and Q-polynomial association schemes. In this paper, we investigate relative t-designs in Johnson association schemes J(v, k) for P-polynomial structure. It is known that each nontrivial shell of J(v, k) is identified with the product of two smaller Johnson association schemes. We prove that relative t-designs in J(v, k) supported by one shell are equivalent to weighted T\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal T$$\end{document}-designs in the shell (as product of association schemes) for T={(t1,t2)∣0≤t1,t2≤t}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal T=\{(t_1,t_2) \mid 0\le t_1,t_2\le t\}$$\end{document}. We study the existence problem of tight relative t-designs on one shell of J(v, k) for t=2,3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$t=2,3$$\end{document}. We propose an algorithm to explicitly construct a family of non-trivial tight relative 2-designs. In addition, we obtain tight relative 3-designs for some special parameters.