Full description of Benjamin-Feir instability of stokes waves in deep water

被引:0
|
作者
Massimiliano Berti
Alberto Maspero
Paolo Ventura
机构
[1] International School for Advanced Studies (SISSA),
来源
Inventiones mathematicae | 2022年 / 230卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Small-amplitude, traveling, space periodic solutions –called Stokes waves– of the 2 dimensional gravity water waves equations in deep water are linearly unstable with respect to long-wave perturbations, as predicted by Benjamin and Feir in 1967. We completely describe the behavior of the four eigenvalues close to zero of the linearized equations at the Stokes wave, as the Floquet exponent is turned on. We prove in particular the conjecture that a pair of non-purely imaginary eigenvalues depicts a closed figure “8”, parameterized by the Floquet exponent, in full agreement with numerical simulations. Our new spectral approach to the Benjamin-Feir instability phenomenon uses a symplectic version of Kato’s theory of similarity transformation to reduce the problem to determine the eigenvalues of a 4×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 4 \times 4 $$\end{document} complex Hamiltonian and reversible matrix. Applying a procedure inspired by KAM theory, we block-diagonalize such matrix into a pair of 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \times 2 $$\end{document} Hamiltonian and reversible matrices, thus obtaining the full description of its eigenvalues.
引用
下载
收藏
页码:651 / 711
页数:60
相关论文
共 50 条
  • [1] Full description of Benjamin-Feir instability of stokes waves in deep water
    Berti, Massimiliano
    Maspero, Alberto
    Ventura, Paolo
    INVENTIONES MATHEMATICAE, 2022, 230 (02) : 651 - 711
  • [2] Benjamin-Feir Instability of Stokes Waves in Finite Depth
    Berti, Massimiliano
    Maspero, Alberto
    Ventura, Paolo
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2023, 247 (05)
  • [4] Benjamin-Feir instability of Rossby waves on a jet
    Esler, JG
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2004, 130 (600) : 1611 - 1630
  • [5] Nonlinear stage of Benjamin-Feir instability in forced/damped deep-water waves
    Armaroli, Andrea
    Eeltink, Debbie
    Brunetti, Maura
    Kasparian, Jerome
    PHYSICS OF FLUIDS, 2018, 30 (01)
  • [6] Benjamin-Feir instability in nonlinear dispersive waves
    Helal, M. A.
    Seadawy, A. R.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (11) : 3557 - 3568
  • [7] Benjamin–Feir instability of Stokes waves
    Berti M.
    Maspero A.
    Ventura P.
    Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 2022, 33 (02): : 399 - 412
  • [8] Stabilizing the Benjamin-Feir instability
    Segur, H
    Henderson, D
    Carter, J
    Hammack, J
    Li, CM
    Pheiff, D
    Socha, K
    JOURNAL OF FLUID MECHANICS, 2005, 539 : 229 - 271
  • [9] A proof of the Benjamin-Feir instability
    Bridges, TJ
    Mielke, A
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 133 (02) : 145 - 198
  • [10] A note on stabilizing the Benjamin-Feir instability
    Wu, Guangyu
    Liu, Yuming
    Yue, Dick K. P.
    JOURNAL OF FLUID MECHANICS, 2006, 556 (45-54) : 45 - 54