Swarm learning for decentralized artificial intelligence in cancer histopathology

被引:0
|
作者
Oliver Lester Saldanha
Philip Quirke
Nicholas P. West
Jacqueline A. James
Maurice B. Loughrey
Heike I. Grabsch
Manuel Salto-Tellez
Elizabeth Alwers
Didem Cifci
Narmin Ghaffari Laleh
Tobias Seibel
Richard Gray
Gordon G. A. Hutchins
Hermann Brenner
Marko van Treeck
Tanwei Yuan
Titus J. Brinker
Jenny Chang-Claude
Firas Khader
Andreas Schuppert
Tom Luedde
Christian Trautwein
Hannah Sophie Muti
Sebastian Foersch
Michael Hoffmeister
Daniel Truhn
Jakob Nikolas Kather
机构
[1] University Hospital RWTH Aachen,Department of Medicine III
[2] University of Leeds,Pathology & Data Analytics, Leeds Institute of Medical Research at St James’s
[3] Queen’s University Belfast,Precision Medicine Centre of Excellence, Health Sciences Building, The Patrick G Johnston Centre for Cancer Research
[4] Regional Molecular Diagnostic Service,The Patrick G Johnston Centre for Cancer Research
[5] Belfast Health and Social Care Trust,Department of Cellular Pathology
[6] Queen’s University Belfast,Centre for Public Health
[7] Belfast Health and Social Care Trust,Department of Pathology and GROW School for Oncology and Reproduction
[8] Queen’s University Belfast,Division of Clinical Epidemiology and Aging Research
[9] Maastricht University Medical Center+,Clinical Trial Service Unit, Nuffield Department of Population Health
[10] German Cancer Research Center (DKFZ),Division of Preventive Oncology
[11] University of Oxford,German Cancer Consortium (DKTK)
[12] German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT),Division of Cancer Epidemiology
[13] German Cancer Research Center (DKFZ),Cancer Epidemiology Group, University Cancer Center Hamburg
[14] Digital Biomarkers for Oncology Group (DBO),Department of Diagnostic and Interventional Radiology
[15] National Center for Tumor Diseases (NCT),Department of Gastroenterology, Hepatology and Infectious Diseases
[16] German Cancer Research Center (DKFZ),Institute of Pathology
[17] German Cancer Research Center (DKFZ),Medical Oncology, National Center for Tumor Diseases (NCT)
[18] University Medical Center Hamburg-Eppendorf,undefined
[19] University Hospital RWTH Aachen,undefined
[20] Institute for Computational Biomedicine,undefined
[21] JRC for Computational Biomedicine,undefined
[22] RWTH Aachen University,undefined
[23] University Hospital Aachen,undefined
[24] Medical Faculty of Heinrich Heine University Düsseldorf,undefined
[25] University Hospital Düsseldorf,undefined
[26] University Medical Center Mainz,undefined
[27] University Hospital Heidelberg,undefined
来源
Nature Medicine | 2022年 / 28卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer and monopolistic data governance. Here, we demonstrate the successful use of SL in large, multicentric datasets of gigapixel histopathology images from over 5,000 patients. We show that AI models trained using SL can predict BRAF mutational status and microsatellite instability directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer. We trained AI models on three patient cohorts from Northern Ireland, Germany and the United States, and validated the prediction performance in two independent datasets from the United Kingdom. Our data show that SL-trained AI models outperform most locally trained models, and perform on par with models that are trained on the merged datasets. In addition, we show that SL-based AI models are data efficient. In the future, SL can be used to train distributed AI models for any histopathology image analysis task, eliminating the need for data transfer.
引用
收藏
页码:1232 / 1239
页数:7
相关论文
共 50 条
  • [1] Swarm learning for decentralized artificial intelligence in cancer histopathology
    Saldanha, Oliver Lester
    Quirke, Philip
    West, Nicholas P.
    James, Jacqueline A.
    Loughrey, Maurice B.
    Grabsch, Heike, I
    Salto-Tellez, Manuel
    Alwers, Elizabeth
    Cifci, Didem
    Laleh, Narmin Ghaffari
    Seibel, Tobias
    Gray, Richard
    Hutchins, Gordon G. A.
    Brenner, Hermann
    van Treeck, Marko
    Yuan, Tanwei
    Brinker, Titus J.
    Chang-Claude, Jenny
    Khader, Firas
    Schuppert, Andreas
    Luedde, Tom
    Trautwein, Christian
    Muti, Hannah Sophie
    Foersch, Sebastian
    Hoffmeister, Michael
    Truhn, Daniel
    Kather, Jakob Nikolas
    NATURE MEDICINE, 2022, 28 (06) : 1232 - +
  • [2] Swarm learning for decentralized deep learning in gastric cancer histopathology
    Saldanha, O. L.
    Grabsch, H. I.
    Muti, H. S.
    Langer, R.
    Dislich, B.
    Kohlruss, M.
    Keller, G.
    Kather, J. N.
    VIRCHOWS ARCHIV, 2022, 481 (SUPPL 1) : S56 - S56
  • [3] Artificial intelligence in breast cancer histopathology
    Chan, Ronald C. K.
    To, Chun Kit Curtis
    Cheng, Ka Chuen Tom
    Yoshikazu, Tada
    Yan, Lai Ling Amy
    Tse, Gary M.
    HISTOPATHOLOGY, 2023, 82 (01) : 198 - 210
  • [4] Artificial intelligence for prostate cancer histopathology diagnostics
    Sandoval, Victor
    Chuang, Zachary
    Power, Nicholas
    Chin, Joseph L. K.
    CUAJ-CANADIAN UROLOGICAL ASSOCIATION JOURNAL, 2022, 16 (12): : 439 - 441
  • [5] Applications of artificial intelligence in prostate cancer histopathology
    Busby, Dallin
    Grauer, Ralph
    Pandav, Krunal
    Khosla, Akshita
    Jain, Parag
    Menon, Mani
    Haines III, G. Kenneth
    Cordon-Cardo, Carlos
    Gorin, Michael A.
    Tewari, Ashutosh K.
    UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2024, 42 (03) : 37 - 47
  • [6] Federated Learning for Decentralized Artificial Intelligence in Melanoma Diagnostics
    Haggenmueller, Sarah
    Schmitt, Max
    Krieghoff-Henning, Eva
    Hekler, Achim
    Maron, Roman C.
    Wies, Christoph
    Utikal, Jochen S.
    Meier, Friedegund
    Hobelsberger, Sarah
    Gellrich, Frank F.
    Sergon, Mildred
    Hauschild, Axel
    French, Lars E.
    Heinzerling, Lucie
    Schlager, Justin G.
    Ghoreschi, Kamran
    Schlaak, Max
    Hilke, Franz J.
    Poch, Gabriela
    Korsing, Soeren
    Berking, Carola
    Heppt, Markus V.
    Erdmann, Michael
    Haferkamp, Sebastian
    Drexler, Konstantin
    Schadendorf, Dirk
    Sondermann, Wiebke
    Goebeler, Matthias
    Schilling, Bastian
    Kather, Jakob N.
    Froehling, Stefan
    Brinker, Titus J.
    JAMA DERMATOLOGY, 2024, 160 (03) : 303 - 311
  • [7] The use of artificial intelligence, machine learning and deep learning in oncologic histopathology
    Sultan, Ahmed S.
    Elgharib, Mohamed A.
    Tavares, Tiffany
    Jessri, Maryam
    Basile, John R.
    JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2020, 49 (09) : 849 - 856
  • [8] Artificial intelligence in ovarian cancer histopathology: a systematic review
    Breen, Jack
    Allen, Katie
    Zucker, Kieran
    Adusumilli, Pratik
    Scarsbrook, Andrew
    Hall, Geoff
    Orsi, Nicolas M.
    Ravikumar, Nishant
    NPJ PRECISION ONCOLOGY, 2023, 7 (01)
  • [9] Artificial intelligence in ovarian cancer histopathology: a systematic review
    Jack Breen
    Katie Allen
    Kieran Zucker
    Pratik Adusumilli
    Andrew Scarsbrook
    Geoff Hall
    Nicolas M. Orsi
    Nishant Ravikumar
    npj Precision Oncology, 7
  • [10] Swarm Intelligence to Coordinate Decentralized Learning Automata in Identical Payoff Games
    Li, Jie
    Zhang, JunQi
    Xu, LinWei
    Jiang, ChangJun
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 133 - 140