Renormalization group flows for track function moments

被引:0
|
作者
Max Jaarsma
Yibei Li
Ian Moult
Wouter Waalewijn
Hua Xing Zhu
机构
[1] Nikhef,Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics
[2] Theory Group,Zhejiang Institute of Modern Physics, Department of Physics
[3] University of Amsterdam,Department of Physics
[4] Zhejiang University,undefined
[5] Yale University,undefined
关键词
Factorization; Renormalization Group; Jets and Jet Substructure; Higher-Order Perturbative Calculations; Properties of Hadrons;
D O I
暂无
中图分类号
学科分类号
摘要
Track functions describe the collective effect of the fragmentation of quarks and gluons into charged hadrons, making them a key ingredient for jet substructure measurements at hadron colliders, where track-based measurements offer superior angular resolution. The first moment of the track function, describing the average energy deposited in charged particles, is a simple and well-studied object. However, measurements of higher-point correlations of energy flow necessitate a characterization of fluctuations in the hadronization process, described theoretically by higher moments of the track function. In this paper we derive the structure of the renormalization group (RG) evolution equations for track function moments. We show that energy conservation gives rise to a shift symmetry that allows the evolution equations to be written in terms of cumulants, κ(N), and the difference between the first moment of quark and gluon track functions, ∆. The uniqueness of the first three cumulants then fixes their all-order evolution to be DGLAP, up to corrections involving powers of ∆, that are numerically suppressed by an effective order in the perturbative expansion for phenomenological track functions. However, at the fourth cumulant and beyond there is non-trivial RG mixing into products of cumulants such as κ(4) into κ(2)2. We analytically compute the evolution equations up to the sixth moment at O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(αs2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\alpha}_s^2 $$\end{document}), and study the associated RG flows. These results allow for the study of up to six-point correlations in energy flow using tracks, paving the way for precision jet substructure at the LHC.
引用
收藏
相关论文
共 50 条
  • [1] Renormalization group flows for track function moments
    Jaarsma, Max
    Li, Yibei
    Moult, Ian
    Waalewijn, Wouter
    Zhu, Hua Xing
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (06)
  • [2] HOW TO TRACK RENORMALIZATION-GROUP FLOWS IN PARAMETER SPACE
    BHANOT, G
    PHYSICS LETTERS B, 1985, 154 (01) : 63 - 68
  • [3] Renormalization group flows and anomalies
    Komargodski, Zohar
    THEORETICAL PHYSICS TO FACE THE CHALLENGE OF LHC, 2015, : 255 - 271
  • [4] Supersymmetric renormalization group flows
    Mastaler, M.
    Synatschke-Czerwonka, F.
    Wipf, A.
    PHYSICS OF PARTICLES AND NUCLEI, 2012, 43 (05) : 593 - 599
  • [5] Optimized renormalization group flows
    Litim, DF
    PHYSICAL REVIEW D, 2001, 64 (10) : 17
  • [6] Singularities of renormalization group flows
    Streets, Jeffrey
    JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (01) : 8 - 16
  • [7] Holographic Renormalization Group Flows
    Aref 'eva, I. Ya.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 200 (03) : 1313 - 1323
  • [8] Holographic Renormalization Group Flows
    I. Ya. Aref’eva
    Theoretical and Mathematical Physics, 2019, 200 : 1313 - 1323
  • [9] Supersymmetric renormalization group flows
    M. Mastaler
    F. Synatschke-Czerwonka
    A. Wipf
    Physics of Particles and Nuclei, 2012, 43 : 593 - 599
  • [10] PHENOMENOLOGICAL RENORMALIZATION-GROUP THROUGH THE MOMENTS OF THE PAIR CORRELATION-FUNCTION
    DEOLIVEIRA, MJ
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (23): : L853 - L855