Correlated network data publication via differential privacy

被引:1
|
作者
Rui Chen
Benjamin C. M. Fung
Philip S. Yu
Bipin C. Desai
机构
[1] Hong Kong Baptist University,
[2] McGill University,undefined
[3] University of Illinois at Chicago,undefined
[4] Concordia University,undefined
来源
The VLDB Journal | 2014年 / 23卷
关键词
Network data; Differential privacy; Data correlation; Non-interactive publication;
D O I
暂无
中图分类号
学科分类号
摘要
With the increasing prevalence of information networks, research on privacy-preserving network data publishing has received substantial attention recently. There are two streams of relevant research, targeting different privacy requirements. A large body of existing works focus on preventing node re-identification against adversaries with structural background knowledge, while some other studies aim to thwart edge disclosure. In general, the line of research on preventing edge disclosure is less fruitful, largely due to lack of a formal privacy model. The recent emergence of differential privacy has shown great promise for rigorous prevention of edge disclosure. Yet recent research indicates that differential privacy is vulnerable to data correlation, which hinders its application to network data that may be inherently correlated. In this paper, we show that differential privacy could be tuned to provide provable privacy guarantees even in the correlated setting by introducing an extra parameter, which measures the extent of correlation. We subsequently provide a holistic solution for non-interactive network data publication. First, we generate a private vertex labeling for a given network dataset to make the corresponding adjacency matrix form dense clusters. Next, we adaptively identify dense regions of the adjacency matrix by a data-dependent partitioning process. Finally, we reconstruct a noisy adjacency matrix by a novel use of the exponential mechanism. To our best knowledge, this is the first work providing a practical solution for publishing real-life network data via differential privacy. Extensive experiments demonstrate that our approach performs well on different types of real-life network datasets.
引用
收藏
页码:653 / 676
页数:23
相关论文
共 50 条
  • [1] Correlated network data publication via differential privacy
    Chen, Rui
    Fung, Benjamin C. M.
    Yu, Philip S.
    Desai, Bipin C.
    VLDB JOURNAL, 2014, 23 (04): : 653 - 676
  • [2] Achieving correlated differential privacy of big data publication
    Lv, Denglong
    Zhu, Shibing
    COMPUTERS & SECURITY, 2019, 82 : 184 - 195
  • [3] Correlated tuple data release via differential privacy
    Wang, Hao
    Wang, Huan
    INFORMATION SCIENCES, 2021, 560 : 347 - 369
  • [4] Data release for machine learning via correlated differential privacy
    Shen, Hua
    Li, Jiqiang
    Wu, Ge
    Zhang, Mingwu
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (03)
  • [5] Dependent Differential Privacy for Correlated Data
    Zhao, Jun
    Zhang, Junshan
    Poor, H. Vincent
    2017 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2017,
  • [6] Bayesian Differential Privacy on Correlated Data
    Yang, Bin
    Sato, Issei
    Nakagawa, Hiroshi
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 747 - 762
  • [7] Privacy preserving and data publication for vehicular trajectories with differential privacy
    Arif, Muhammad
    Chen, Jianer
    Wang, Guojun
    Geman, Oana
    Balas, Valentina Emilia
    MEASUREMENT, 2021, 173
  • [8] Horizontally Partitioned Data Publication with Differential Privacy
    Gu, Zhen
    Zhang, Guoyin
    Yang, Chen
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [9] Trajectory Data Publication Based on Differential Privacy
    Gu, Zhen
    Zhang, Guoyin
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY AND PRIVACY, 2023, 17 (01)
  • [10] Privacy Preserving Social Network Data Publication
    Abawajy, Jemal H.
    Ninggal, Mohd Izuan Hafez
    Herawan, Tutut
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2016, 18 (03): : 1974 - 1997