Topological properties of locally finite covering rough sets and K-topological rough set structures

被引:0
|
作者
Sang-Eon Han
机构
[1] Jeonbuk National University,Department of Mathematics Education, Institute of Pure and Applied Mathematics
来源
Soft Computing | 2021年 / 25卷
关键词
Covering rough set; Neighborhood system; Locally finite; Covering approximation space; LFC-space; -rough set; -topological rough set; Duality; Closure; Interior; Digital topological rough set; LFC-system; -topological rough set;
D O I
暂无
中图分类号
学科分类号
摘要
The paper initially proves that locally finite covering (LFC-, for short) rough set structures are interior and closure operators. To be precise, given an LFC-space (U,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(U ,\mathbf{C})$$\end{document}, we prove that the lower H-rough set operator H∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{*}$$\end{document} is an interior operator and the upper H-rough set operator H∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{*}$$\end{document} is a closure operator. Besides, we prove a duality of the concept approximations (H∗,H∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(H_{*}, H^{*})$$\end{document} and investigate many theoretical and mathematical properties of the H-rough set operators. After pointing out that Khalimsky (K-, for brevity) topological rough set operators have their own features, we prove that the K-topological lower (resp. upper) approximation operator is not an interior (resp. closure) operator from the viewpoint of K-topology. Besides, we intensively investigate theoretical and mathematical properties of the K-topological rough set operators. This research area can be considered as a part of geometric-based rough set theory. These obtained results can promote the studies of rough set theory associated with information geometry, object classification, artificial or computational intelligence, and so on. In the present paper, each of the sets U, C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{C}$$\end{document} and X(⊆U)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(\subseteq U)$$\end{document} need not be finite.
引用
收藏
页码:6865 / 6877
页数:12
相关论文
共 50 条
  • [1] Topological properties of locally finite covering rough sets and K-topological rough set structures
    Han, Sang-Eon
    [J]. SOFT COMPUTING, 2021, 25 (10) : 6865 - 6877
  • [2] Topological approaches to covering rough sets
    Zhu, William
    [J]. INFORMATION SCIENCES, 2007, 177 (06) : 1499 - 1508
  • [3] Topological properties in covering-based rough sets
    Zhu, William
    Wang, Fei-Yue
    [J]. FOURTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, 2007, : 289 - +
  • [4] Topological Structures of a Type of Granule Based Covering Rough Sets
    Zhang, Yan-lan
    Li, Chang-qing
    [J]. FILOMAT, 2018, 32 (09) : 3129 - 3141
  • [5] Covering rough set structures for a locally finite covering approximation space
    Han, Sang-Eon
    [J]. INFORMATION SCIENCES, 2019, 480 : 420 - 437
  • [6] Covering soft rough sets and its topological properties with application
    Atef, Mohammed
    Nada, Shokry
    Nawar, Ashraf
    [J]. SOFT COMPUTING, 2023, 27 (08) : 4451 - 4461
  • [7] Covering soft rough sets and its topological properties with application
    Mohammed Atef
    Shokry Nada
    Ashraf Nawar
    [J]. Soft Computing, 2023, 27 : 4451 - 4461
  • [8] Topological Properties for Approximation Operators in Covering Based Rough Sets
    Restrepo, Mauricio
    Gomez, Jonatan
    [J]. ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, RSFDGRC 2015, 2015, 9437 : 112 - 123
  • [9] Study on covering rough sets with topological methods
    Wang, Xue
    Ma, Liwen
    [J]. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2019, 4 (03) : 129 - 134
  • [10] On Fuzzy Rough Sets and Their Topological Structures
    Tang, Weidong
    Wu, Jinzhao
    Zheng, Dingwei
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014