A pleiotropic model of phenotypic evolution

被引:0
|
作者
Yoshinari Tanaka
机构
[1] Yokohama National University,Laboratory of Theoretical Ecology, Institute of Environmental Science and Technology
来源
Genetica | 1998年 / 102-103卷
关键词
mutation; pleiotropy; genetic variance; genetic load; selection limit;
D O I
暂无
中图分类号
学科分类号
摘要
A pleiotropic model is presented for deriving the equilibrium genetic variance by mutation and stabilizing selection and the long-term genetic responses to directional selection in the case where mutations have pleiotropic effects on fitnes itself (direct deleterious effect) and on a quantitative trait (phenotypic effect). The equilibrium genetic variance is derived as a general form of the rare-alleles models, i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde V_G = \frac{{2n\mu \alpha ^2 }}{{s_u + \alpha ^2 /(2V_s )}}$$ \end{document}, where n is the number of loci, μ is the per-locus mutation rate, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\alpha ^2 $$ \end{document} is the variance of new mutations, Vs is the measure of stabilizing selection, and su is the selection coefficient on mutations by direct deleterious effect. The genetic responses to directional selection is calculated based on the assumption that the genetic variance is kept at an equilibrium by mutation and stabilizing selection but without directional selection, and the directional selection starts to operate on the target trait. The evolutionary rate at the t-th generation after the introduction of the directional selection is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Delta \bar z(t) = i\tilde V_G e^{ - s_T t} $$ \end{document} , where i is the directional selection intensity, and sT is the total selection coefficient on mutations, i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$s_u + \alpha ^2 /(2V_s )$$ \end{document} . The selection limit is\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$R = iV_m /s_T^2 $$ \end{document} , where Vm is the mutational variance \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(2n\mu \alpha ^2 )$$ \end{document}. The pleiotropic effects of genes reduce both the evolutionary rate and the selection limit.
引用
收藏
相关论文
共 50 条
  • [1] A pleiotropic model of phenotypic evolution
    Tanaka, Y
    [J]. GENETICA, 1998, 102-3 (0) : 535 - 543
  • [2] A statistical model for testing the pleiotropic control of phenotypic plasticity for a count trait
    Ma, Chang-Xing
    Yu, Qibin
    Berg, Arthur
    Drost, Derek
    Novaes, Evandro
    Fu, Guifang
    Yap, John Stephen
    Tan, Aixin
    Kirst, Matias
    Cui, Yuehua
    Wu, Rongling
    [J]. GENETICS, 2008, 179 (01) : 627 - 636
  • [3] Rethinking the evolution of specialization: A model for the evolution of phenotypic heterogeneity
    Rubin, Ilan N.
    Doebeli, Michael
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2017, 435 : 248 - 264
  • [4] Model of phenotypic evolution in hermaphroditic populations
    Ryszard Rudnicki
    Paweł Zwoleński
    [J]. Journal of Mathematical Biology, 2015, 70 : 1295 - 1321
  • [5] Model of phenotypic evolution in hermaphroditic populations
    Rudnicki, Ryszard
    Zwolenski, Pawel
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 70 (06) : 1295 - 1321
  • [6] A reaction–diffusion model for phenotypic evolution
    Raul Abreu de Assis
    Wilson Castro Ferreira
    [J]. Computational and Applied Mathematics, 2018, 37 : 235 - 254
  • [7] A PHENOTYPIC MODEL FOR THE EVOLUTION OF ECOLOGICAL CHARACTERS
    EMLEN, JM
    [J]. THEORETICAL POPULATION BIOLOGY, 1980, 17 (02) : 190 - 200
  • [8] A general model of functional constraints on phenotypic evolution
    Walker, J.
    [J]. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2007, 146 (04): : S119 - S120
  • [9] A discrete-time model of phenotypic evolution
    Cirne, Diego
    Campos, Paulo R. A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2024, 476
  • [10] A reaction-diffusion model for phenotypic evolution
    de Assis, Raul Abreu
    Ferreira, Wilson Castro, Jr.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (01): : 235 - 254