Detonation formation in H $_2$-O $_2$/He/Ar mixtures at elevated initial pressures

被引:0
|
作者
B.L. Wang
M. Habermann
M. Lenartz
H. Olivier
H. Grönig
机构
[1] Shock Wave Laboratory,
[2] RWTH Aachen,undefined
[3] Templergraben 55,undefined
[4] 52056 Aachen,undefined
[5] Germany,undefined
来源
Shock Waves | 2000年 / 10卷
关键词
Key words: Hydrogen, DDT, Induction distance, Initiation, High pressure;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper the formation of detonation in H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_2$\end{document}-O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_2$\end{document}/He/Ar mixtures at elevated initial pressures was investigated in an initiation tube for a detonation driver with an exploding wire as the ignition source. In most experiments the detonation wave was formed by a DDT process in which a reactive shock wave accelerates behind the leading shock wave and eventually leads to the onset of detonation. The onset position was found to be at the leading shock wave or behind it. Only in very sensitive mixtures at high initial pressure the direct initiation of detonation was observed. The influence of ignition energy, initial pressure and composition on the detonation induction distance was determined. The results show that the detonation induction distance increases with the decrease of ignition energy and initial pressure and with the increase of the mole fraction of helium or argon. With the same mole fraction, argon increases the induction distance more than helium. In the facility utilized the DDT upper and lower limits of hydrogen in H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_2$\end{document}-O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_2$\end{document} mixtures are in the ranges from 36 to 40 % and from 78 to 82 %, respectively, and the upper limits for helium and argon in stoichiometric H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_2$\end{document}-O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_2$\end{document} mixtures are 40 % and 36 %, respectively. High pressure peaks generated by the DDT process were measured, especially in mixtures near the DDT limits. Statistical results show that such peak pressures can be up to 6 times of the CJ-pressures.
引用
收藏
页码:295 / 300
页数:5
相关论文
共 50 条
  • [1] Detonation formation in H2-O2/He/Ar mixtures at elevated initial pressures
    Wang, BL
    Habermann, M
    Lenartz, M
    Olivier, H
    Grönig, H
    [J]. SHOCK WAVES, 2000, 10 (04) : 295 - 300
  • [2] Detonation structure of C2H4-O2-Ar mixtures at elevated initial temperature
    Auffret, Y
    Desbordes, D
    Presles, HN
    [J]. SHOCK WAVES, 1999, 9 (02) : 107 - 111
  • [3] Detonation wave diffraction in H2-O2-Ar mixtures
    Gallier, S.
    Le Palud, F.
    Pintgen, F.
    Mevel, R.
    Shepherd, J. E.
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2017, 36 (02) : 2781 - 2789
  • [4] Detonation structure and detonability of C2H4-O2 mixtures at elevated initial temperature
    Auffret, Y
    Desbordes, D
    Presles, HN
    [J]. SHOCK WAVES, 2001, 11 (02) : 89 - 96
  • [5] Ignition and detonation in N2O-CO-H2-He mixtures
    Starikovskii, AY
    [J]. TWENTY-SIXTH SYMPOSIUM (INTERNATIONAL) ON COMBUSTION, VOLS 1 AND 2, 1996, : 2999 - 3005
  • [6] Shock tube and kinetic study of C2H6/H2/O2/Ar mixtures at elevated pressures
    Pan, Lun
    Zhang, Yingjia
    Zhang, Jiaxiang
    Tian, Zemin
    Huang, Zuohua
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (11) : 6024 - 6033
  • [7] Detonation of H2-NO2/N2O4-Ar mixtures.
    Luche, J
    Desbordes, D
    Presles, HN
    [J]. COMPTES RENDUS MECANIQUE, 2006, 334 (05): : 323 - 327
  • [8] DETONATION IN F2-D2-HE, AR, CO2 MIXTURES
    VASILEV, GK
    MAKAROV, EF
    PAPIN, VG
    [J]. ZHURNAL TEKHNICHESKOI FIZIKI, 1981, 51 (02): : 434 - 436
  • [9] Influence of Small Xe Additives on the Detonation Threshold for O2-H2-He Mixtures
    Kulikov, S. V.
    Chervonnaya, N. A.
    [J]. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 12 (01) : 98 - 102
  • [10] Detonation behaviors of stoichiometric H2-O2 mixture diluted with He, N2, CO2 at different initial pressures br
    Hou, Yujie
    Liu, Xiaoyang
    Lv, Xianshu
    Yu, Xiaozhe
    Yan, Xingqing
    Yu, Jianliang
    [J]. FUEL, 2022, 330