Effect of ZnS, iZnO, dZnO and Cu(In,Ga)Se2 thickness on the performance of simulated Mo/Cu(In,Ga)Se2/ZnS/iZnO/dZnO solar cell

被引:0
|
作者
Abdelhak Jrad
Tarek Ben Nasr
Souad Ammar
Najoua Turki-Kamoun
机构
[1] Université Tunis El Manar,LR99ES13 Laboratoire de Physique de la Matière Condensée (LPMC), Département de Physique, Faculté des Sciences de Tunis
[2] Université Paris Diderot,Sorbonne Paris Cité, ITODYS, CNRS, UMR
来源
关键词
Solar cell; Silvaco ATLAS; Thin film; Efficiency;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, Mo/Cu(In,Ga)Se2/ZnS/iZnO/dZnO solar cell is simulated and optimized by studying the effect of layers thickness on solar cell efficiency using Silvaco ATLAS software. The input simulation parameters are: dielectric permittivity ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\upvarepsilon \right)$$\end{document}, band gap energy Eg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {E_{g} } \right)$$\end{document}, electron affinity χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\upchi \right)$$\end{document}, conduction band effective density of states Nc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {N_{c} } \right)$$\end{document}, valence band effective density of states Nv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {N_{v} } \right)$$\end{document}. The output parameters used to find the optimum values of the layers thickness are the short circuit current density Isc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {I_{sc} } \right)$$\end{document}, open circuit voltage Voc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {V_{oc} } \right)$$\end{document}, maximum power Pmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {P_{max} } \right)$$\end{document}, fill factor FF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\text{FF}} \right)$$\end{document}, efficiency η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\upeta \right)$$\end{document}, Current–voltage (I–V) and power–voltage (P–V) characteristics.
引用
收藏
相关论文
共 50 条
  • [1] Effect of ZnS, iZnO, dZnO and Cu(In,Ga)Se2 thickness on the performance of simulated Mo/Cu(In,Ga)Se2/ZnS/iZnO/dZnO solar cell
    Jrad, Abdelhak
    Ben Nasr, Tarek
    Ammar, Souad
    Turki-Kamoun, Najoua
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2019, 51 (08)
  • [2] ZnO/ZnS(O,OH)/Cu(In,Ga)Se2[Mo solar cell with 18.6% efficiency
    Contreras, MA
    Nakada, T
    Hongo, M
    Pudov, AO
    Sites, JR
    [J]. PROCEEDINGS OF 3RD WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS A-C, 2003, : 570 - 573
  • [3] Chemical and structural characterization of Cu(In, Ga)Se2/Mo interface in Cu(In, Ga)Se2 solar cells
    Matsushita Electric Industry Co, Ltd, Kyoto, Japan
    [J]. Jpn J Appl Phys Part 2 Letter, 10 A (L1253-L1256):
  • [4] Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance
    Lundberg, O
    Bodegård, M
    Malmström, J
    Stolt, L
    [J]. PROGRESS IN PHOTOVOLTAICS, 2003, 11 (02): : 77 - 88
  • [5] Comparison of Ag(ln,Ga)Se2/Mo and Cu(In,Ga)Se2/Mo Interfaces in Solar Cells
    Zhang, Xianfeng
    Kobayashi, Masakazu
    Yamada, Akira
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (19) : 16215 - 16220
  • [6] Alignment of energy levels at the ZnS/Cu(In,Ga)Se2 interface
    Larina, Liudmila
    Shin, Donghyeop
    Kim, Ji Hye
    Ahn, Byung Tae
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) : 3487 - 3493
  • [7] Chemical structures of the Cu(In,Ga)Se2/Mo and Cu(In,Ga)(S,Se)2/Mo interfaces
    Baer, M.
    Weinhardt, L.
    Heske, C.
    Nishiwaki, S.
    Shafarman, W. N.
    [J]. PHYSICAL REVIEW B, 2008, 78 (07):
  • [8] Fabrication of Cu(In,Ga)Se2 solar cell with ZnS/CdS double layer as an alternative buffer
    Shin, Dong Hyeop
    Larina, Liudmila
    Yoon, Kyung Hoon
    Ahn, Byung Tae
    [J]. CURRENT APPLIED PHYSICS, 2010, 10 : S142 - S145
  • [9] A Theoretical Modeling of the Cu(In, Ga)Se2 Solar Cell
    Gagandeep
    Singh, M.
    Kumar, R.
    Chand, F.
    [J]. PROCEEDINGS OF THE NATIONAL CONFERENCE ON RECENT ADVANCES IN CONDENSED MATTER PHYSICS: RACMP-2018, 2019, 2093
  • [10] Cu(In,Ga)Se2 solar cells with controlled conduction band offset of window/Cu(In,Ga)Se2 layers
    Minemoto, T
    Hashimoto, Y
    Satoh, T
    Negami, T
    Takakura, H
    Hamakawa, Y
    [J]. JOURNAL OF APPLIED PHYSICS, 2001, 89 (12) : 8327 - 8330