Coupling CFD and RSM to optimize the flow and heat transfer performance of a manifold microchannel heat sink

被引:0
|
作者
Farzad Pourfattah
Mohsen Faraji Kheryrabadi
Lian-Ping Wang
机构
[1] Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Center for Complex Flows and Soft Matter Research and Department of Mechanics and Aerospace Engineering
[2] Department of Mechanical Engineering,Guangdong
[3] Faculty of Engineering,Hong Kong
[4] University of Isfahan,Macao Joint Laboratory for Data
[5] Southern University of Science and Technology,Driven Fluid Mechanics and Engineering Applications
关键词
CFD; Manifold microchannel; Optimization; Thermal management;
D O I
暂无
中图分类号
学科分类号
摘要
Maintaining the operating temperature within the allowable range for electronic components is crucial. This work aims to optimize the design of a heatsink manifold microchannel where the working fluid is MWCNT/water-nanofluid. The design parameters include inlet width (Linlet)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({L}_{inlet})$$\end{document}, outlet width (Loutlet)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({L}_{outlet})$$\end{document}, heatsink height (hf)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${h}_{f})$$\end{document}, and MWCNT nanoparticle volume fraction in the working fluid (φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varphi )$$\end{document}. Minimum pressure drop and minimum thermal resistance are selected as the objective functions. The finite volume method simulates the flow field and heat transfer at each design point. A regression model between the objective functions and the design variables is derived by utilizing the response surface method, and the sensitivity analysis of objective functions is performed by Pareto chart analysis. Finally, the response optimization method configures the optimal design points as Linlet\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{inlet}$$\end{document}, Loutlet\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{outlet}$$\end{document}, hf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${h}_{f}$$\end{document} being 85, 91, 245 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu m$$\end{document}, respectively, and φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi$$\end{document} 0.016, corresponding to a pressure loss at 2677 Pa and thermal resistance at 0.8281 K/W. According to the results, the outlet width and heatsink height significantly affect the pressure drop and thermal resistance. Moreover, the physics of the flow field shows that the strength of the corner vortex and separation on the manifold can play a significant role in the thermal and hydraulic performance of the manifold microchannel heat sink. A numerical simulation has been performed to assess the regression model’s accuracy in predicting the thermal and fluid performance at the optimum point, showing a good agreement between the model prediction and the simulation results.
引用
收藏
相关论文
共 50 条
  • [1] Coupling CFD and RSM to optimize the flow and heat transfer performance of a manifold microchannel heat sink
    Pourfattah, Farzad
    Kheryrabadi, Mohsen Faraji
    Wang, Lian-Ping
    [J]. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2023, 45 (03)
  • [2] CFD investigation of the effect of manifold and microchannel ratio on the hydrodynamic performance of microchannel heat sink
    Ong, Yue Seong
    Shaari, Ku Zilati Ku
    [J]. SN APPLIED SCIENCES, 2020, 2 (07)
  • [3] CFD investigation of the effect of manifold and microchannel ratio on the hydrodynamic performance of microchannel heat sink
    Yue Seong Ong
    Ku Zilati Ku Shaari
    [J]. SN Applied Sciences, 2020, 2
  • [4] Heat transfer and flow issues in manifold microchannel heat sinks: a CFD approach
    Poh, ST
    Ng, EYK
    [J]. 2ND ELECTRONICS PACKAGING TECHNOLOGY CONFERENCE, PROCEEDINGS, 1998, : 246 - 250
  • [5] NUMERICAL INVESTIGATION OF FLOW BOILING IN A MANIFOLD MICROCHANNEL HEAT SINK WITH CONJUGATE HEAT TRANSFER
    Sun, Zhichuan
    Luo, Yang
    Li, Junye
    Li, Wei
    Zhang, Jingzhi
    Zhang, Zhengjiang
    Wu, Jie
    [J]. PROCEEDINGS OF THE ASME 6TH INTERNATIONAL CONFERENCE ON MICRO/NANOSCALE HEAT AND MASS TRANSFER, 2019, 2019,
  • [6] Investigation of heat transfer performance of the manifold microchannel heat sink with different interface configurations
    Kang, Haozhe
    Mei, Xuesong
    Xu, Kaida
    Cui, Jianlei
    [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 159
  • [7] Numerical study on the heat transfer performance of non-Newtonian fluid flow in a manifold microchannel heat sink
    Li, Si-Ning
    Zhang, Hong-Na
    Li, Xiao-Bin
    Li, Qian
    Li, Feng-Chen
    Qian, Shizhi
    Joo, Sang Woo
    [J]. APPLIED THERMAL ENGINEERING, 2017, 115 : 1213 - 1225
  • [8] CFD analysis for heat transfer and fluid flow in microchannel heat sink with micro inserts
    Kumar, Shailesh Ranjan
    Singh, Satyendrta
    [J]. MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 11213 - 11216
  • [9] Study on the flow and heat transfer characteristics of pin-fin manifold microchannel heat sink
    Pan, Yuhui
    Zhao, Rui
    Nian, Yongle
    Cheng, Wenlong
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 183
  • [10] The influence of pin fin structure on the flow and heat transfer characteristics of the manifold microchannel heat sink
    Zhang, Xilong
    Dong, Wenlin
    Liu, Jiang
    Cang, Peng
    Liu, Bin
    Zhang, Chao
    [J]. Applied Thermal Engineering, 2025, 261