Nonconcave robust optimization with discrete strategies under Knightian uncertainty

被引:0
|
作者
Ariel Neufeld
Mario Šikić
机构
[1] Nanyang Technological University,Division of Mathematical Sciences
[2] University of Zurich,Center for Finance and Insurance
关键词
Nonconcave robust optimization; Robust utility maximization; Knightian uncertainty; 93E20; 49L20; 91B16;
D O I
暂无
中图分类号
学科分类号
摘要
We study robust stochastic optimization problems in the quasi-sure setting in discrete-time. The strategies in the multi-period-case are restricted to those taking values in a discrete set. The optimization problems under consideration are not concave. We provide conditions under which a maximizer exists. The class of problems covered by our robust optimization problem includes optimal stopping and semi-static trading under Knightian uncertainty.
引用
收藏
页码:229 / 253
页数:24
相关论文
共 50 条
  • [1] Nonconcave robust optimization with discrete strategies under Knightian uncertainty
    Neufeld, Ariel
    Sikic, Mario
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2019, 90 (02) : 229 - 253
  • [2] Online Discrete Optimization in Social Networks in the Presence of Knightian Uncertainty
    Raginsky, Maxim
    Nedic, Angelia
    [J]. OPERATIONS RESEARCH, 2016, 64 (03) : 662 - 679
  • [3] Robust combinatorial optimization under convex and discrete cost uncertainty
    Buchheim, Christoph
    Kurtz, Jannis
    [J]. EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2018, 6 (03) : 211 - 238
  • [4] Adjustable Robust Optimization with Discrete Uncertainty
    Lefebvre, Henri
    Malaguti, Enrico
    Monaci, Michele
    [J]. INFORMS JOURNAL ON COMPUTING, 2024, 36 (01) : 78 - 96
  • [5] Equilibria Under Knightian Price Uncertainty
    Beissner, Patrick
    Riedel, Frank
    [J]. ECONOMETRICA, 2019, 87 (01) : 37 - 64
  • [6] Production and hedging under Knightian uncertainty
    Lien, D
    [J]. JOURNAL OF FUTURES MARKETS, 2000, 20 (04) : 397 - 404
  • [7] Viability and Arbitrage Under Knightian Uncertainty
    Burzoni, Matteo
    Riedel, Frank
    Soner, H. Mete
    [J]. ECONOMETRICA, 2021, 89 (03) : 1207 - 1234
  • [8] Pathwise convergence under Knightian uncertainty
    Akhtari, Bahar
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 518 (01)
  • [9] Planning under Risk and Knightian Uncertainty
    Trevizan, Felipe W.
    Cozman, Fabio G.
    de Barros, Leliane N.
    [J]. 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2023 - 2028
  • [10] Stochastic Independence under Knightian Uncertainty
    Pejsachowicz, Leonardo
    [J]. REVUE D ECONOMIE POLITIQUE, 2016, 126 (03): : 379 - 398