Quasi-metric antipodal spaces and maximal Gromov hyperbolic spaces

被引:0
|
作者
Kingshook Biswas
机构
[1] Indian Statistical Institute,
来源
Geometriae Dedicata | 2024年 / 218卷
关键词
Gromov hyperbolic spaces; Cross-ratio; Moebius maps; Injective metric spaces; 51F30;
D O I
暂无
中图分类号
学科分类号
摘要
Hyperbolic fillings of metric spaces are a well-known tool for proving results on extending quasi-Moebius maps between boundaries of Gromov hyperbolic spaces to quasi-isometries between the spaces. For a hyperbolic filling Y of the boundary of a Gromov hyperbolic space X, one has a quasi-Moebius identification between the boundaries ∂Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial Y$$\end{document} and ∂X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial X$$\end{document}. For CAT(-1) spaces, and more generally boundary continuous Gromov hyperbolic spaces, one can refine the quasi-Moebius structure on the boundary to a Moebius structure. It is then natural to ask whether there exists a functorial hyperbolic filling of the boundary by a boundary continuous Gromov hyperbolic space with an identification between boundaries which is not just quasi-Moebius, but in fact Moebius. The filling should be functorial in the sense that a Moebius homeomorphism between boundaries should induce an isometry between there fillings. We give a positive answer to this question for a large class of boundaries satisfying one crucial hypothesis, the antipodal property. This gives a class of compact spaces called quasi-metric antipodal spaces. For any such space Z, we give a functorial construction of a boundary continuous Gromov hyperbolic space M(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}(Z)$$\end{document} together with a Moebius identification of its boundary with Z. The space M(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}(Z)$$\end{document} is maximal amongst all fillings of Z. These spaces M(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}(Z)$$\end{document} give in fact all examples of a natural class of spaces called maximal Gromov hyperbolic spaces. We prove an equivalence of categories between quasi-metric antipodal spaces and maximal Gromov hyperbolic spaces. This is part of a more general equivalence we prove between the larger categories of certain spaces called antipodal spaces and maximal Gromov product spaces. We prove that the injective hull of a Gromov product space X is isometric to the maximal Gromov product space M(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}(Z)$$\end{document}, where Z is the boundary of X. We also show that a Gromov product space is injective if and only if it is maximal.
引用
收藏
相关论文
共 50 条
  • [1] Quasi-metric antipodal spaces and maximal Gromov hyperbolic spaces
    Biswas, Kingshook
    [J]. GEOMETRIAE DEDICATA, 2024, 218 (02)
  • [2] QUASI-METRIC AND METRIC SPACES
    Schroeder, Viktor
    [J]. CONFORMAL GEOMETRY AND DYNAMICS, 2006, 10 : 355 - 360
  • [3] ON QUASI-METRIC SPACES
    STOLTENBERG, RA
    [J]. DUKE MATHEMATICAL JOURNAL, 1969, 36 (01) : 65 - +
  • [4] ON QUASI-METRIC AND METRIC SPACES
    Paluszynski, Maciej
    Stempak, Krzysztof
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (12) : 4307 - 4312
  • [5] Recursive quasi-metric spaces
    Brattka, V
    [J]. THEORETICAL COMPUTER SCIENCE, 2003, 305 (1-3) : 17 - 42
  • [6] METRIZATION OF QUASI-METRIC SPACES
    RAGHAVAN, TG
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 435 - &
  • [7] Geometry of Quasi-Metric Spaces
    Alvarado, Ryan
    Mitrea, Marius
    [J]. HARDY SPACES ON AHLFORS-REGULAR QUASI METRIC SPACES: A SHARP THEORY, 2015, 2142 : 33 - 69
  • [8] Quasi-metric spaces with measure
    Stojmirovic, Aleksandar
    [J]. Topology Proceedings, Vol 28, No 2, 2004, 2004, 28 (02): : 655 - 671
  • [9] ON COMPLETENESS IN QUASI-METRIC SPACES
    DOITCHINOV, D
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1988, 30 (02) : 127 - 148
  • [10] On entropy on quasi-metric spaces
    Haihambo, Paulus
    Olela-Otafudu, Olivier
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2023, 332