Correction to: Equilibrium computation in resource allocation games

被引:0
|
作者
Tobias Harks
Veerle Tan-Timmermans
机构
[1] Augsburg University,Department of Mathematics
[2] RWTH Aachen,Department of Management Science
关键词
D O I
10.1007/s10107-022-01813-8
中图分类号
学科分类号
摘要
This note contains a correction of Theorems 1 and 2 and the subroutine RESTORE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {Restore}$$\end{document} of the article Harks, T., Timmermans, V. Equilibrium computation in resource allocation games. Math. Program. (2021) https://doi.org/10.1007/s10107-020-01604-z, see [3]. The correction leads to slightly increased sensitivity bounds (by a factor n) but all main results of the original paper contained in the previous version remain qualitatively intact. In the following, we describe the corrected sensitivity results of Theorems 1 and 2 and prove correctness and running time of the changed subroutine RESTORE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {Restore}$$\end{document}. The full and corrected version including all changed bounds can be found at [2]. We thank Alex Skopalik who communicated to us that the proof of Theorem 1 is incorrect.
引用
收藏
页码:35 / 40
页数:5
相关论文
共 50 条
  • [1] Equilibrium computation in resource allocation games
    Tobias Harks
    Veerle Timmermans
    [J]. Mathematical Programming, 2022, 194 : 1 - 34
  • [2] Nash equilibrium Computation in Resource Allocation Games Extended Abstract
    Gupta, Shivam
    Mehta, Ruta
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 1953 - 1955
  • [3] Equilibrium computation in resource allocation games (Feb, 10.1007/s10107-020-01604-z, 2021)
    Harks, Tobias
    Tan-Timmermans, Veerle
    [J]. MATHEMATICAL PROGRAMMING, 2022, 194 (1-2) : 35 - 40
  • [4] On the Nash Equilibrium Solutions of Integer Bit Loading OFDMA Resource Allocation Games
    Liang, Zhenyu
    Chew, Yong Huat
    Ko, Chi Chung
    [J]. 2009 IEEE 20TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, 2009, : 1692 - 1696
  • [5] Resource Allocation Polytope Games: Uniqueness of Equilibrium, Price of Stability, and Price of Anarchy
    Dhamal, Swapnil
    Ben-Ameur, Walid
    Chahed, Tijani
    Altman, Eitan
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 997 - 1006
  • [6] Mixed Strategy Nash Equilibrium in Two-User Resource Allocation Games
    Gao, Jie
    Vorobyov, Sergiy A.
    Jiang, Hai
    [J]. 2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011, : 2716 - 2720
  • [7] Equilibrium analyses in allocation games
    Fiala, Petr
    [J]. MATHEMATICAL METHODS IN ECONOMICS 2013, PTS I AND II, 2013, : 165 - 170
  • [8] Dynamic Resource Allocation Games
    Avni, Guy
    Henzinger, Thomas A.
    Kupferman, Orna
    [J]. ALGORITHMIC GAME THEORY, SAGT 2016, 2016, 9928 : 153 - 166
  • [9] Dynamic resource allocation games
    Avni, Guy
    Henzinger, Thomas A.
    Kupferman, Orna
    [J]. THEORETICAL COMPUTER SCIENCE, 2020, 807 : 42 - 55
  • [10] Resource Allocation Games with Multiple Resource Classes
    Ofer, Roy B.
    Tamir, Tami
    [J]. APPROXIMATION AND ONLINE ALGORITHMS (WAOA 2016), 2017, 10138 : 155 - 169