Coupling stochastic EM and approximate Bayesian computation for parameter inference in state-space models

被引:0
|
作者
Umberto Picchini
Adeline Samson
机构
[1] Lund University,Centre for Mathematical Sciences
[2] Universite Grenoble Alpes,undefined
[3] LJK,undefined
[4] CNRS,undefined
[5] LJK,undefined
来源
Computational Statistics | 2018年 / 33卷
关键词
Hidden Markov model; Maximum likelihood; Particle filter; SAEM; Sequential Monte Carlo; Stochastic differential equation;
D O I
暂无
中图分类号
学科分类号
摘要
We study the class of state-space models and perform maximum likelihood estimation for the model parameters. We consider a stochastic approximation expectation–maximization (SAEM) algorithm to maximize the likelihood function with the novelty of using approximate Bayesian computation (ABC) within SAEM. The task is to provide each iteration of SAEM with a filtered state of the system, and this is achieved using an ABC sampler for the hidden state, based on sequential Monte Carlo methodology. It is shown that the resulting SAEM-ABC algorithm can be calibrated to return accurate inference, and in some situations it can outperform a version of SAEM incorporating the bootstrap filter. Two simulation studies are presented, first a nonlinear Gaussian state-space model then a state-space model having dynamics expressed by a stochastic differential equation. Comparisons with iterated filtering for maximum likelihood inference, and Gibbs sampling and particle marginal methods for Bayesian inference are presented.
引用
收藏
页码:179 / 212
页数:33
相关论文
共 50 条
  • [1] Coupling stochastic EM and approximate Bayesian computation for parameter inference in state-space models
    Picchini, Umberto
    Samson, Adeline
    [J]. COMPUTATIONAL STATISTICS, 2018, 33 (01) : 179 - 212
  • [2] Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models
    Vakilzadeh, Majid K.
    Huang, Yong
    Beck, James L.
    Abrahamsson, Thomas
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 84 : 2 - 20
  • [3] Parameter Inference for Computational Cognitive Models with Approximate Bayesian Computation
    Kangasraasio, Antti
    Jokinen, Jussi P. P.
    Oulasvirta, Antti
    Howes, Andrew
    Kaski, Samuel
    [J]. COGNITIVE SCIENCE, 2019, 43 (06)
  • [4] Approximate Gaussian variance inference for state-space models
    Deka, Bhargob
    Goulet, James-A.
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2023, 37 (11) : 2934 - 2962
  • [5] Bayesian inference in nonparametric dynamic state-space models
    Ghosh, Anurag
    Mukhopadhyay, Soumalya
    Roy, Sandipan
    Bhattacharya, Sourabh
    [J]. STATISTICAL METHODOLOGY, 2014, 21 : 35 - 48
  • [6] Structured Variational Inference in Bayesian State-Space Models
    Wang, Honggang
    Yang, Yun
    Pati, Debdeep
    Bhattacharya, Anirban
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [7] State inference in variational Bayesian nonlinear state-space models
    Raiko, T
    Tornio, M
    Honkela, A
    Karhunen, J
    [J]. INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 222 - 229
  • [8] Biased Online Parameter Inference for State-Space Models
    Del Moral, Pierre
    Jasra, Ajay
    Zhou, Yan
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2017, 19 (03) : 727 - 749
  • [9] Biased Online Parameter Inference for State-Space Models
    Pierre Del Moral
    Ajay Jasra
    Yan Zhou
    [J]. Methodology and Computing in Applied Probability, 2017, 19 : 727 - 749
  • [10] Approximate Bayesian Computation by Subset Simulation for Parameter Inference of Dynamical Models
    Vakilzadeh, Majid K.
    Huang, Yong
    Beck, James L.
    Abrahamsson, Thomas
    [J]. MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION, VOL 3, 2016, : 37 - 50