We establish the existence and multiplicity of solutions for Kirchhoff elliptic problems of type -m∫R3|∇u|2dxΔu=f(x,u),x∈R3,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} -m\left( \mathop \int \limits _{\mathbb {R}^3} |\nabla u|^2 \mathrm{{d}}x\right) \Delta u = f(x,u), \quad x \in \mathbb {R}^3, \end{aligned}$$\end{document}where m:R+→R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m:\mathbb {R}_+\rightarrow \mathbb {R}$$\end{document} is continuous, positive and satisfies appropriate growth and/or monotonicity conditions. We consider the cases that f is asymptotically 3-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3-$$\end{document}linear or 3-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3-$$\end{document}superlinear at infinity, in an appropriated sense. By using variational methods, we obtain our results under crossing assumptions of the functions m and f with respect to limit eigenvalues problems. In the model case m(t)=a+bt\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m(t)=a+bt$$\end{document}, we also prove a concentration result for some solutions when b→0+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$b\rightarrow 0^+$$\end{document}.