Kirchhoff elliptic problems with asymptotically linear or superlinear nonlinearities

被引:0
|
作者
Marcelo F. Furtado
Edcarlos D. Silva
Uberlandio B. Severo
机构
[1] Universidade de Brasília,Departamento de Matemática
[2] Universidade Federal de Goiás,Instituto de Matemática e Estatística
[3] Universidade Federal da Paraíba,Departamento de Matemática
关键词
Kirchhoff equation; Asymptotically linear problems; Superlinear problems; Variational methods; Primary 35J50; Secondary 47G20;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the existence and multiplicity of solutions for Kirchhoff elliptic problems of type -m∫R3|∇u|2dxΔu=f(x,u),x∈R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -m\left( \mathop \int \limits _{\mathbb {R}^3} |\nabla u|^2 \mathrm{{d}}x\right) \Delta u = f(x,u), \quad x \in \mathbb {R}^3, \end{aligned}$$\end{document}where m:R+→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m:\mathbb {R}_+\rightarrow \mathbb {R}$$\end{document} is continuous, positive and satisfies appropriate growth and/or monotonicity conditions. We consider the cases that f is asymptotically 3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3-$$\end{document}linear or 3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3-$$\end{document}superlinear at infinity, in an appropriated sense. By using variational methods, we obtain our results under crossing assumptions of the functions m and f with respect to limit eigenvalues problems. In the model case m(t)=a+bt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(t)=a+bt$$\end{document}, we also prove a concentration result for some solutions when b→0+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\rightarrow 0^+$$\end{document}.
引用
收藏
相关论文
共 50 条