A New Approach to the Parameterization Method for Lagrangian Tori of Hamiltonian Systems

被引:0
|
作者
Jordi Villanueva
机构
[1] Universitat Politècnica de Catalunya,Departament de Matemàtiques
来源
关键词
Hamiltonian systems; KAM theory; Lagrangian tori; Parameterization methods; 37J40; 70K43;
D O I
暂无
中图分类号
学科分类号
摘要
We compute invariant Lagrangian tori of analytic Hamiltonian systems by the parameterization method. Under Kolmogorov’s non-degeneracy condition, we look for an invariant torus of the system carrying quasi-periodic motion with fixed frequencies. Our approach consists in replacing the invariance equation of the parameterization of the torus by three conditions which are altogether equivalent to invariance. We construct a quasi-Newton method by solving, approximately, the linearization of the functional equations defined by these three conditions around an approximate solution. Instead of dealing with the invariance error as a single source of error, we consider three different errors that take account of the Lagrangian character of the torus and the preservation of both energy and frequency. The condition of convergence reflects at which level contributes each of these errors to the total error of the parameterization. We do not require the system to be nearly integrable or to be written in action-angle variables. For nearly integrable Hamiltonians, the Lebesgue measure of the holes between invariant tori predicted by this parameterization result is of O(ε1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\varepsilon ^{1/2})$$\end{document}, where ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} is the size of the perturbation. This estimate coincides with the one provided by the KAM theorem.
引用
收藏
页码:495 / 530
页数:35
相关论文
共 50 条
  • [1] A New Approach to the Parameterization Method for Lagrangian Tori of Hamiltonian Systems
    Villanueva, Jordi
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (02) : 495 - 530
  • [2] A modified parameterization method for invariant Lagrangian tori for partially integrable Hamiltonian systems
    Figueras, Jordi-Lluis
    Haro, Alex
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2024, 462
  • [3] HAMILTONIAN-SYSTEMS, LAGRANGIAN TORI AND BIRKHOFF THEOREM
    BIALY, M
    POLTEROVICH, L
    [J]. MATHEMATISCHE ANNALEN, 1992, 292 (04) : 619 - 627
  • [4] Flow map parameterization methods for invariant tori in Hamiltonian systems
    Haro, Alex
    Mondelo, J. M.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 101
  • [5] Lagrangian tori near resonances of near-integrable Hamiltonian systems
    Medvedev, A. G.
    Neishtadt, A. I.
    Treschev, D. V.
    [J]. NONLINEARITY, 2015, 28 (07) : 2105 - 2130
  • [6] LAGRANGIAN PROJECTIONS OF INVARIANT TORI OF HAMILTONIAN-SYSTEMS WITH 2 DEGREES OF FREEDOM
    BYALYI, ML
    POLTEROVICH, LV
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1989, 23 (01) : 54 - 55
  • [7] LAGRANGIAN SINGULARITIES OF INVARIANT TORI OF HAMILTONIAN-SYSTEMS WITH 2 DEGREES OF FREEDOM
    BIALY, ML
    POLTEROVICH, LV
    [J]. INVENTIONES MATHEMATICAE, 1989, 97 (02) : 291 - 303
  • [8] A Parameterization Method for Lagrangian Tori of Exact Symplectic Maps of R2r
    Villanueva, Jordi
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (03): : 2289 - 2331
  • [9] Flow Map Parameterization Methods for Invariant Tori in Quasi-Periodic Hamiltonian Systems
    Fernandez-Mora, Alvaro
    Haro, Alex
    Mondelo, J. M.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2024, 23 (01): : 127 - 166
  • [10] On Hamiltonian stable Lagrangian tori in complex hyperbolic spaces
    Kajigaya, Toru
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2020, 72 (02) : 435 - 463