Despite the extensive investigation on the stress and displacement distributions in tunnels, few have considered the influences of the damaged zone around a tunnel on the strength and stiffness parameters of the surrounding rock, including the gradual variation in the damaged factor D and dimensionless damaged radius ρd\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho^{{\text{d}}}$$\end{document}, under the effect of excavation disturbance. In this paper, a numerical solution is presented for the stresses and displacement of a circular tunnel excavated in a Hoek–Brown rock mass considering the progressive destruction of the damaged zone. First, the results obtained using the proposed algorithm are compared with those obtained using other numerical solutions, demonstrating a high degree of accuracy through some examples. Second, the influences of the damaged factor D\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$D$$\end{document} and dimensionless damaged radius ρd\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho^{d}$$\end{document} on the stresses, radial displacement, plastic radii, and ground response curve are investigated. The results show that, as the damaged factor D increases, the radial displacement and plastic radius increase, whereas the tangential stress decreases. Both the plastic radius and displacement decrease with decreasing ρd\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho^{{\text{d}}}$$\end{document}. This shows that the damaged factor D has a significant effect on tunnel convergence.