A comparison of random forests, boosting and support vector machines for genomic selection

被引:142
|
作者
Joseph O Ogutu
Hans-Peter Piepho
Torben Schulz-Streeck
机构
[1] Institute of Crop Science,Bioinformatics Unit
[2] University of Hohenheim,undefined
关键词
Support Vector Machine; Random Forest; Predictive Accuracy; Predictive Performance; Genomic Selection;
D O I
10.1186/1753-6561-5-S3-S11
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Predictive ability of Random Forests, Boosting, Support Vector Machines and Genomic Best Linear Unbiased Prediction in different scenarios of genomic evaluation
    Ghafouri-Kesbi, Farhad
    Rahimi-Mianji, Ghodratollah
    Honarvar, Mahmood
    Nejati-Javaremi, Ardeshir
    [J]. ANIMAL PRODUCTION SCIENCE, 2017, 57 (02) : 229 - 236
  • [2] Comparison of Support Vector Machines and Random Forests for Corine Land Cover Mapping
    Dabija, Anca
    Kluczek, Marcin
    Zagajewski, Bogdan
    Raczko, Edwin
    Kycko, Marlena
    Al-Sulttani, Ahmed H.
    Tarda, Anna
    Pineda, Lydia
    Corbera, Jordi
    [J]. REMOTE SENSING, 2021, 13 (04) : 1 - 35
  • [3] Predicting siRNA potency with random forests and support vector machines
    Liangjiang Wang
    Caiyan Huang
    Jack Y Yang
    [J]. BMC Genomics, 11
  • [4] Predicting siRNA potency with random forests and support vector machines
    Wang, Liangjiang
    Huang, Caiyan
    Yang, Jack Y.
    [J]. BMC GENOMICS, 2010, 11
  • [5] A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    Statnikov, Alexander
    Wang, Lily
    Aliferis, Constantin F.
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [6] A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    Alexander Statnikov
    Lily Wang
    Constantin F Aliferis
    [J]. BMC Bioinformatics, 9
  • [7] Experimental comparison of support vector machines with random forests for hyperspectral image land cover classification
    B T Abe
    O O Olugbara
    T Marwala
    [J]. Journal of Earth System Science, 2014, 123 : 779 - 790
  • [8] Experimental comparison of support vector machines with random forests for hyperspectral image land cover classification
    Abe, B. T.
    Olugbara, O. O.
    Marwala, T.
    [J]. JOURNAL OF EARTH SYSTEM SCIENCE, 2014, 123 (04) : 779 - 790
  • [9] Optimization of hyperparameters and feature selection for random forests and support vector machines by artificial bee colony algorithm
    Kondo, Hisashi
    Asanuma, Yuma
    [J]. Transactions of the Japanese Society for Artificial Intelligence, 2019, 34 (02):
  • [10] SEABED IMAGE SEGMENTATION USING RANDOM FORESTS AND SUPPORT VECTOR MACHINES
    Rimavicius, Tadas
    Gelzinis, Adas
    Vaiciukynas, Evaldas
    Olenin, Sergej
    Saskov, Aleksej
    [J]. PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND CONTROL TECHNOLOGIES, 2013, : 41 - 44