First 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{2}{n}$$\end{document}-stability eigenvalue of singular minimal hypersurfaces in space forms

被引:0
|
作者
Ha Tuan Dung
Nguyen Thac Dung
Juncheol Pyo
机构
[1] Hanoi Pedagogical University 2,Department of Mathematics
[2] Vietnam National University,Faculty of Mathematics
[3] University of Science, Mechanics
[4] Hanoi, Informatics
[5] Thang Long University,Thang Long Institute of Mathematics and Applied Sciences (TIMAS)
[6] Pusan National University,Department of Mathematics
[7] Korea Institute for Advanced Study,undefined
关键词
Catenoids; Stability eigenvalue; Minimal hypersurfaces; Primary 53C40; Secondary 53C24;
D O I
10.1007/s10455-022-09880-y
中图分类号
学科分类号
摘要
In this paper, we study the first 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{2}{n}$$\end{document}-stability eigenvalue on singular minimal hypersurfaces in space forms. We provide a characterization of catenoids in space forms in terms of 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{2}{n}$$\end{document}-stable eigenvalue. We emphasize that this result is even new in the regular setting.
引用
收藏
相关论文
共 50 条