An inversion problem for optical spectrum data via physics-guided machine learning

被引:0
|
作者
Park, Hwiwoo [1 ]
Park, Jun H. [2 ]
Hwang, Jungseek [1 ]
机构
[1] Sungkyunkwan Univ, Dept Phys, Suwon 16419, Gyeonggi Do, South Korea
[2] Sungkyunkwan Univ, Sch Mech Engn, Suwon 16419, Gyeonggi Do, South Korea
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
新加坡国家研究基金会;
关键词
TIKHONOV REGULARIZATION; SUPERCONDUCTIVITY;
D O I
10.1038/s41598-024-59594-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose the regularized recurrent inference machine (rRIM), a novel machine-learning approach to solve the challenging problem of deriving the pairing glue function from measured optical spectra. The rRIM incorporates physical principles into both training and inference and affords noise robustness, flexibility with out-of-distribution data, and reduced data requirements. It effectively obtains reliable pairing glue functions from experimental optical spectra and yields promising solutions for similar inverse problems of the Fredholm integral equation of the first kind.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Probabilistic physics-guided machine learning for fatigue data analysis
    Chen, Jie
    Liu, Yongming
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 168
  • [2] Physics-guided deep learning-based inversion for airborne electromagnetic data
    Wu, Sihong
    Huang, Qinghua
    Zhao, Li
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2024, 238 (03) : 1774 - 1789
  • [3] Reducio: Model Reduction for Data Center Predictive Digital Twins via Physics-Guided Machine Learning
    Cao, Zhiwei
    Wang, Ruihang
    Zhou, Xin
    Wen, Yonggang
    [J]. PROCEEDINGS OF THE 2022 THE 9TH ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILDINGS, CITIES, AND TRANSPORTATION, BUILDSYS 2022, 2022, : 1 - 10
  • [4] Physics-guided machine learning from simulated data with different physical parameters
    Chen, Shengyu
    Kalanat, Nasrin
    Xie, Yiqun
    Li, Sheng
    Zwart, Jacob A.
    Sadler, Jeffrey M.
    Appling, Alison P.
    Oliver, Samantha K.
    Read, Jordan S.
    Jia, Xiaowei
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (08) : 3223 - 3250
  • [5] Physics-guided machine learning from simulated data with different physical parameters
    Shengyu Chen
    Nasrin Kalanat
    Yiqun Xie
    Sheng Li
    Jacob A. Zwart
    Jeffrey M. Sadler
    Alison P. Appling
    Samantha K. Oliver
    Jordan S. Read
    Xiaowei Jia
    [J]. Knowledge and Information Systems, 2023, 65 : 3223 - 3250
  • [6] Multitask Learning-Driven Physics-Guided Deep Learning Magnetotelluric Inversion
    Liu, Wei
    Wang, He
    Xi, Zhenzhu
    Wang, Liang
    Chen, Chaoyang
    Guo, Tao
    Yan, Maoshan
    Wang, Tongtong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [7] Physics-Guided Machine Learning for Structural Metamodeling and Fragility Analysis
    Bond, Robert Bailey
    Ren, Pu
    Sun, Hao
    Hajjar, Jerome F.
    [J]. PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON BEHAVIOUR OF STEEL STRUCTURES IN SEISMIC AREAS, STESSA 2024 - VOL 1, 2024, 519 : 855 - 866
  • [8] Physics-Guided Adversarial Machine Learning for Aircraft Systems Simulation
    Ben Braiek, Houssem
    Reid, Thomas
    Khomh, Foutse
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 2023, 72 (03) : 1161 - 1175
  • [9] Top-of-line corrosion via physics-guided machine learning: A methodology integrating field data with theoretical models
    Silakorn, Passaworn
    Jantrakulchai, Nawat
    Wararatkul, Napat
    Wanwilairat, Sumbhath
    Kangkachit, Thanapat
    Techapiesancharoenkij, Ratchatee
    Rakthanmanon, Thanawin
    Hanlumyuang, Yuranan
    [J]. Journal of Petroleum Science and Engineering, 2022, 215
  • [10] Top-of-line corrosion via physics-guided machine learning: A methodology integrating field data with theoretical models
    Silakorn, Passaworn
    Jantrakulchai, Nawat
    Wararatkul, Napat
    Wanwilairat, Sumbhath
    Kangkachit, Thanapat
    Techapiesancharoenkij, Ratchatee
    Rakthanmanon, Thanawin
    Hanlumyuang, Yuranan
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 215