Time periodic solutions to the Navier–Stokes equations in the rotational framework

被引:0
|
作者
Tsukasa Iwabuchi
Ryo Takada
机构
[1] Faculty of Science and Engineering,Department of Mathematics
[2] Chuo University,Department of Mathematics
[3] Kyoto University,undefined
来源
关键词
Primary 35Q30; Secondary 35B10; The Navier-Stokes equations; The Coriolis force; Time periodic solutions; Dispersive effects of the Coriolis force;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Navier–Stokes equations in the rotational framework with the time periodic external force. We give sufficient conditions on the size of the external forces for the existence of time periodic solutions in terms of the Coriolis parameter. It follows from our conditions that the unique existence of time periodic solutions is guaranteed for large external forces provided the speed of rotation is sufficiently fast.
引用
收藏
页码:985 / 1000
页数:15
相关论文
共 50 条
  • [1] Time periodic solutions to the Navier-Stokes equations in the rotational framework
    Iwabuchi, Tsukasa
    Takada, Ryo
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2012, 12 (04) : 985 - 1000
  • [2] Global solutions for the Navier-Stokes equations in the rotational framework
    Tsukasa Iwabuchi
    Ryo Takada
    [J]. Mathematische Annalen, 2013, 357 : 727 - 741
  • [3] Global solutions for the Navier-Stokes equations in the rotational framework
    Iwabuchi, Tsukasa
    Takada, Ryo
    [J]. MATHEMATISCHE ANNALEN, 2013, 357 (02) : 727 - 741
  • [4] Time periodic solutions of compressible Navier-Stokes equations
    Ma, Hongfang
    Ukai, Seiji
    Yang, Tong
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (09) : 2275 - 2293
  • [5] Stability of time periodic solutions for the rotating navier-stokes equations
    [J]. Takada, Ryo (takada@math.tohoku.ac.jp), 1600, Springer Verlag (none):
  • [6] Time-periodic statistical solutions of the Navier-Stokes equations
    Fursikov, AV
    [J]. TURBULENCE MODELING AND VORTEX DYNAMICS, 1997, 491 : 123 - 147
  • [7] WEAK TIME-PERIODIC SOLUTIONS TO THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Cai, Hong
    Tan, Zhong
    [J]. ACTA MATHEMATICA SCIENTIA, 2016, 36 (02) : 499 - 513
  • [8] Estimates of Time-Periodic Fundamental Solutions to the Linearized Navier–Stokes Equations
    Thomas Eiter
    Mads Kyed
    [J]. Journal of Mathematical Fluid Mechanics, 2018, 20 : 517 - 529
  • [9] On time periodic solutions, asymptotic stability and bifurcations of Navier-Stokes equations
    Hsia, Chun-Hsiung
    Jung, Chang-Yeol
    Thien Binh Nguyen
    Shiue, Ming-Cheng
    [J]. NUMERISCHE MATHEMATIK, 2017, 135 (02) : 607 - 638
  • [10] On the uniqueness of time-periodic solutions to the Navier–Stokes equations in unbounded domains
    Yasushi Taniuchi
    [J]. Mathematische Zeitschrift, 2009, 261 : 597 - 615