Peakon, Periodic Peakons, Compactons and Bifurcations of nonlinear Schrödinger's Equation with Kudryashov's Law of Refractive Index

被引:0
|
作者
Zhang, Qiuyan [1 ,2 ]
Zhou, Yuqian [1 ]
Li, Jibin [1 ,3 ,4 ]
Yu, Mengke [1 ]
机构
[1] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[3] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Fujian, Peoples R China
[4] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Solitary wave solution; Peakon; Periodic peakon; Compacton; Bifurcation; Nonlinear Schrodinger's equation; Kudryashov's law; SHALLOW-WATER EQUATION; SCHRODINGERS EQUATION; OPTICAL SOLITONS; POWER-LAW;
D O I
10.1007/s44198-024-00184-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the nonlinear Schrodinger's equation with Kudryashov's law of refractive index. By using the method of dynamical systems, we obtain bifurcations of the phase portraits of the traveling wave system under different parameter conditions. Corresponding to some special level curves, we derive possible exact explicit parametric representations of solutions (including peakon, periodic peakon, solitary wave solutions and compactons) under different parameter conditions.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] BIFURCATIONS OF SOLITARY WAVES, PERIODIC PEAKONS AND COMPACTONS OF A COUPLED NONLINEAR WAVE EQUATION
    Zhuang, Jinsen
    Zhou, Yan
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (05): : 1997 - 2013
  • [2] New exact solutions for perturbed nonlinear Schrödinger’s equation with self-phase modulation of Kudryashov's sextic power law refractive index
    S. E. Farahat
    E. S. El Shazly
    I. L. El-Kalla
    A. H. Abdel Kader
    Optical and Quantum Electronics, 2023, 55
  • [3] New dispersive optical soliton for an nonlinear Schrödinger equation with Kudryashov law of refractive index along with P-test
    Syed T. R. Rizvi
    Aly. R. Seadawy
    Urooj Akram
    Optical and Quantum Electronics, 2022, 54
  • [4] BIFURCATIONS OF PERIODIC ORBITS IN THE GENERALISED NONLINEAR SCHRÓDINGER EQUATION
    Bandara, Ravindra I.
    Giraldo, Andrus
    Broderick, Neil G. R.
    Krauskopf, Bernd
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2024,
  • [5] New exact solutions for perturbed nonlinear Schrödinger's equation with self-phase modulation of Kudryashov's sextic power law refractive index
    Farahat, S. E.
    El Shazly, E. S.
    El-Kalla, I. L.
    Kader, A. H. Abdel
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (14)
  • [6] Highly dispersive optical solitons in the nonlinear Schrödinger’s equation having polynomial law of the refractive index change
    Elsayed M E Zayed
    Mohamed E M Alngar
    Mahmoud M El-Horbaty
    Anjan Biswas
    Mehmet Ekici
    Qin Zhou
    Salam Khan
    Fouad Mallawi
    Milivoj R Belic
    Indian Journal of Physics, 2021, 95 : 109 - 119
  • [7] Investigation of optical soliton solutions of higher-order nonlinear Schrödinger equation having Kudryashov nonlinear refractive index
    Ozisik M.
    Secer A.
    Bayram M.
    Cinar M.
    Ozdemir N.
    Esen H.
    Onder I.
    Optik, 2023, 274
  • [8] Quiescent optical solitons with Kudryashov?s law of nonlinear refractive index
    Arnous, Ahmed H.
    Biswas, Anjan
    Yildirim, Yakup
    Moraru, Luminita
    Moldovanu, Simona
    Alghamdi, Abdulah A.
    RESULTS IN PHYSICS, 2023, 47
  • [9] Doubly Periodic Solution for Nonlinear Schrödinger’s Equation With Higher Order Polynomial Law Nonlinearity
    Daniela Milovic
    Anjan Biswas
    International Journal of Theoretical Physics, 2008, 47 : 3335 - 3340
  • [10] Investigation of solitons in magneto-optic waveguides with Kudryashov's law nonlinear refractive index for coupled system of generalized nonlinear Schrödinger's equations using modified extended mapping method
    Ahmed, Karim K.
    Badra, Niveen M.
    Ahmed, Hamdy M.
    Rabie, Wafaa B.
    Mirzazadeh, Mohammad
    Eslami, Mostafa
    Hashemi, Mir Sajjad
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2024, 29 (02): : 205 - 223