Nonquasineutral model of an equilibrium Z-pinch

被引:0
|
作者
A. V. Gordeev
机构
[1] Russian Research Centre Kurchatov Institute,
来源
Plasma Physics Reports | 2001年 / 27卷
关键词
Magnetic Field; Equilibrium State; Radial Direction; Charge Separation; Peripheral Region;
D O I
暂无
中图分类号
学科分类号
摘要
A fundamentally new approach is proposed for describing Z-pinches when the pinch current is gov-erned to a large extent by strong charge separation, which gives rise to a radial electric field in the nonquasineutral core of the pinch. In the central pinch region with a characteristic radius of about \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$r_0 \sim \sqrt {J_0 /en_e c}$$ \end{document}, part of the total pinch current J0<J, is carried by the drifting electrons and the remaining current is carried by ions moving at the velocity viz∼c(2eZJ/mic3) in the peripheral region with a radial size of c/ωpi. In the nonquasineutral core of a Z-pinch, the radial ion “temperature” is on the order of ZeJ0/c. The time during which the non-quasineutral region exists is limited by Coulomb collisions between the ions oscillating in the radial direction and the electrons. Since the magnetic field is not frozen in the ions, no sausage instability can occur in the non-quasineutral core of the Z-pinch. In the equilibrium state under discussion, the ratio of the radial charge-separation electric field E0 to the atomic field Ea may be as large as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$E_0 /E_a \sim 137^2 (a_0 \omega _{pe} /c)\sqrt {J/J_{Ae} }$$ \end{document}, where a0 is the Bohr radius.
引用
收藏
页码:235 / 242
页数:7
相关论文
共 50 条
  • [1] Nonquasineutral model of an equilibrium Z-pinch
    Gordeev, AV
    [J]. PLASMA PHYSICS REPORTS, 2001, 27 (03) : 235 - 242
  • [2] The z-pinch structure generation by the evolution of the nonquasineutral electron vortex
    Gordeev, AV
    Losseva, TV
    [J]. DENSE Z-PINCHES, 2002, 651 : 420 - 423
  • [3] Formation of a Z-pinch during electromagnetic compression of a nonquasineutral current filament
    Gordeev, AV
    Losseva, TV
    [J]. PLASMA PHYSICS REPORTS, 2003, 29 (09) : 748 - 756
  • [4] Formation of a Z-pinch during electromagnetic compression of a nonquasineutral current filament
    A. V. Gordeev
    T. V. Losseva
    [J]. Plasma Physics Reports, 2003, 29 : 748 - 756
  • [5] Equilibrium Evolution in the ZaP Flow Z-Pinch
    U. Shumlak
    B. A. Nelson
    C. S. Adams
    D. J. Den Hartog
    R. P. Golingo
    S. L. Jackson
    S. D. Knecht
    J. B. Pasko
    D. T. Schmuland
    [J]. Journal of Fusion Energy, 2007, 26 : 185 - 189
  • [6] Equilibrium evolution in the ZaP flow Z-pinch
    Shumlak, U.
    Nelson, B. A.
    Adams, C. S.
    Den Hartog, D. J.
    Golingo, R. P.
    Jackson, S. L.
    Knecht, S. D.
    Pasko, J. B.
    Schmuland, D. T.
    [J]. JOURNAL OF FUSION ENERGY, 2007, 26 (1-2) : 185 - 189
  • [7] Analytic model for the dynamic Z-pinch
    Piriz, A. R.
    Sun, Y. B.
    Tahir, N. A.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (06)
  • [8] THE HYDRAULIC MODEL OF A PLASMA IN A Z-PINCH
    FORSTE, J
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1982, 62 (09): : 463 - 469
  • [9] SNOWPLOW MODEL OF TAPERED Z-PINCH
    BAITY, FW
    BENNETT, WH
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (10): : 1296 - 1296
  • [10] Equilibrium, flow shear and stability measurements in the Z-pinch
    Shumlak, U.
    Adams, C. S.
    Blakely, J. M.
    Chan, B. -J.
    Golingo, R. P.
    Knecht, S. D.
    Nelson, B. A.
    Oberto, R. J.
    Sybouts, M. R.
    Vogman, G. V.
    [J]. NUCLEAR FUSION, 2009, 49 (07)