A comprehensive hierarchical classification based on multi-features of breast DCE-MRI for cancer diagnosis

被引:0
|
作者
Hui Liu
Jinke Wang
Jiyue Gao
Shanshan Liu
Xiang Liu
Zuowei Zhao
Dongmei Guo
Guo Dan
机构
[1] Dalian University of Technology & IC Technology Key Lab of Liaoning,School of Biomedical Engineering
[2] Dalian Medical University,Department of Radiology, Second Affiliated Hospital
[3] Dalian Jiaotong University,School of Materials Science and Engineering
[4] Shenzhen University Health Science Center School of Biomedical Engineering,undefined
关键词
Breast cancer; Computer-aided diagnosis; Texture feature; Feature selection; Hierarchical classification model;
D O I
暂无
中图分类号
学科分类号
摘要
Computer-aided diagnosis (CAD) is widely used for early diagnosis of breast cancer. The commonly used morphological feature (MF), dynamic feature (DF), and texture feature (TF) from breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been proved very valuable and are studied in this paper. However, previous studies ignored the prior knowledge that most of the benign lesions have clearer and smoother edges than malignant ones. Therefore, two new TFs are proposed. To obtain an optimal feature subset and an accurate classification result, feature selection is applied in this paper. Moreover, most existing CAD models with simple structure only focus on common lesions and ignore hard-to-spot lesions so that a satisfied performance can be obtained for common lesions but there are some contradictions for those hard-to-spot lesions. Therefore, in this paper, a comprehensive hierarchical model is proposed to deal with contradictions and predict all kinds of lesions. The experimental result shows that the new features obviously increase ACC of TF from 0.7788 to 0.8584 and feature selection increases ACC of DF form 0.6991 to 0.7345. More importantly, compared with the existing CAD models and deep learning method, the proposed model which provides a higher performance for both common and hard-to-spot lesions significantly increases the classification performance with sensitivity of 0.9452 and specificity of 0.9000.
引用
收藏
页码:2413 / 2425
页数:12
相关论文
共 50 条
  • [1] A comprehensive hierarchical classification based on multi-features of breast DCE-MRI for cancer diagnosis
    Liu, Hui
    Wang, Jinke
    Gao, Jiyue
    Liu, Shanshan
    Liu, Xiang
    Zhao, Zuowei
    Guo, Dongmei
    Dan, Guo
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2020, 58 (10) : 2413 - 2425
  • [2] Spatiotemporal features of DCE-MRI for breast cancer diagnosis
    Banaie, Masood
    Soltanian-Zadeh, Hamid
    Saligheh-Rad, Hamid-Reza
    Gity, Masoumeh
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 155 : 153 - 164
  • [3] Breast cancer classification with mammography and DCE-MRI
    Yuan, Yading
    Giger, Maryellen L.
    Li, Hui
    Sennett, Charlene
    [J]. MEDICAL IMAGING 2009: COMPUTER-AIDED DIAGNOSIS, 2009, 7260
  • [4] Molecular subtypes classification of breast cancer in DCE-MRI using deep features
    Hasan, Ali M.
    Al-Waely, Noor K. N.
    Aljobouri, Hadeel K.
    Jalab, Hamid A.
    Ibrahim, Rabha W.
    Meziane, Farid
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 236
  • [5] Association of DW/DCE-MRI features with prognostic factors in breast cancer
    Shao, Guoliang
    Fan, Linyin
    Zhang, Juan
    Dai, Gang
    Xie, Tieming
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MARKERS, 2017, 32 (01): : E118 - E125
  • [6] Analysis of DCE-MRI Features in Tumor for Prediction of the Prognosis in Breast Cancer
    Liu, Bin
    Fan, Ming
    Zheng, Shuo
    Li, Lihua
    [J]. MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
  • [7] A Multiresolution Analysis Framework For Breast Tumor Classification Based On DCE-MRI
    Tzalavra, Alexia G.
    Zacharaki, Evangelia I.
    Tsiaparas, Nikolaos N.
    Constantinidis, Fotios
    Nikita, Konstantina S.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS & TECHNIQUES (IST), 2014, : 246 - 250
  • [8] Automated localization of breast cancer in DCE-MRI
    Gubern-Merida, Albert
    Marti, Robert
    Melendez, Jaime
    Hauth, Jakob L.
    Mann, Ritse M.
    Karssemeijer, Nico
    Platel, Bram
    [J]. MEDICAL IMAGE ANALYSIS, 2015, 20 (01) : 265 - 274
  • [9] Kinetic heterogeneity features on breast DCE-MRI as prognostic markers of breast cancer recurrence
    Mahrooghy, M.
    Ashraf, A. B.
    Gavenonis, S. C.
    Daye, D.
    Mies, C.
    Feldman, M.
    Rosen, M.
    Kontos, D.
    [J]. CANCER RESEARCH, 2013, 73
  • [10] Prediction of Histological Grade in Breast Cancer by Combining DCE-MRI and DWI Features
    Zhao, Wenrui
    Fan, Ming
    Xu, Maosheng
    Li, Lihua
    [J]. MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954