Exploring stable models in f(R,T,RμνTμν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(R,T, R_{\mu\nu}T^{\mu\nu})$\end{document} gravity

被引:0
|
作者
E. H. Baffou
M. J. S. Houndjo
J. Tosssa
机构
[1] Institut de Mathématiques et de Sciences Physiques (IMSP),Faculté des Sciences et Techniques de Natitingou
[2] Université de Natitingou,undefined
关键词
Perturbation functions; gravity;
D O I
10.1007/s10509-016-2958-y
中图分类号
学科分类号
摘要
We examine in this paper the stability analysis in f(R,T,RμνTμν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(R,T, R_{\mu\nu }T^{\mu\nu})$\end{document} modified gravity, where R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R$\end{document} and T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T$\end{document} are the Ricci scalar and the trace of the energy-momentum tensor, respectively. By considering the flat Friedmann universe, we obtain the corresponding generalized Friedmann equations and we evaluate the geometrical and matter perturbation functions. The stability is developed using the de Sitter and power-law solutions. We search for application the stability of two particular cases of f(R,T,RμνTμν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(R,T, R_{\mu\nu}T^{\mu\nu})$\end{document} model by solving numerically the perturbation functions obtained.
引用
收藏
相关论文
共 50 条