Existence and Uniqueness of Very Weak Solutions to the Steady-State Navier–Stokes Problem in Lipschitz Domains

被引:0
|
作者
Vincenzo Coscia
机构
[1] Università di Ferrara,Dipartimento di Matematica e Informatica
关键词
Stationary Navier Stokes equations; Bounded Lipschitz domains; Boundary-value problem; Primary 76D05; 35Q30; Secondary 31B10; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that in a bounded Lipschitz domain of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document} the steady-state Navier–Stokes equations with boundary data in L2(∂Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\partial \Omega )$$\end{document} have a very weak solution u∈L3(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{u}\in L^3(\Omega )$$\end{document}, unique for large viscosity.
引用
收藏
页码:819 / 829
页数:10
相关论文
共 50 条